Skip to main content
Book cover

Purines pp 233–243Cite as

Palgrave Macmillan

Effects of Purines on Cell Growth and Differentiation

  • Chapter
  • 119 Accesses

Abstract

The normal growth and differentiation of eukaryotic cells is dependent upon an adequate supply of purine nucleotides. Their role in cellular metabolism is multifaceted, since they serve as substrates for kinase reactions, act as precursors for RNA and DNA synthesis, modulate allosteric enzymes and function as second messengers for hormones, e.g., cyclic AMP and cyclic GMP. All cells, regardless of their state of activity, utilize nitrogenous bases with great economy so that biosynthetic and degradative processes are under precise regulation. Two major routes, designated as the de novo and salvage pathways for the synthesis of purines and pyrimidines have been defined. The de novo pathway utilizes low molecular weight precursors to synthesizepurine and pyrimidine bases required for formation of ribonucleotides. The salvage pathway scavenges free purine and pyrimidine bases produced by hydrolytic breakdown of ribonucleotides and recycles them via a complex series of metabolic reactions (Figure 1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ayarwal, R.P., Sagar, S.M., and Parks, R.E., Jr. (1975). Biochem. Pharmacol. 24, 693–701.

    Article  Google Scholar 

  • Berridge, M. (1975). J. Cyclic Nuc. Res. 1, 305–320. Borchardt, R.T., Patel, U.G., and Bartel,R.L. (1982). In Biochemistry of S-adenosylmethionine and related compounds. Ed: Usdin, E. Borchardt, R.T. and Creveling, C.R.) MacMillan Pub., London.

    Google Scholar 

  • Drossler, K., Klima, F., and Ambrosium, H. (1981). Immunol. 44, 61–67.

    CAS  Google Scholar 

  • Elion, G.P., and Hitchings, G.H. (1965). Adv. Chem. Therap. 2, 91–177.

    Google Scholar 

  • Fields, T. and Brox, L. (1974). Can. J. Biochem. 52, 441–446.

    Article  PubMed  CAS  Google Scholar 

  • Fletcher, L. and Maddox, J.L. (1980). Brit. J. Clin. Pharmacol. 10, 87–89.

    Google Scholar 

  • Hendrick, D., and Mirkin, B.L. (1984). Lancet (Feb. 4, 1984), 277.

    Article  Google Scholar 

  • Hovi, T., Allison, A.C., Raivio, K.O., and Vaheri, A. (1977). In Purine and Pyrimidine Metabolism. Ciba Foundation Symposium, 48.

    Google Scholar 

  • Hovi, T., Smyth, J.F., Allison, A.C., and Williams, S.C. (1976). Clin. Exp. Immunol. 23, 395–403.

    Google Scholar 

  • Klooy, Y., Axelrod, J., and Spector, I. (1983). J. Neurochem. 40, 522–527.

    Article  Google Scholar 

  • Mirkin, B.L., O’Dea, R.F., and Hoyenkamp, H.P. (1984). In Advances in Neuroblastoma Research. Alan R. Liss Pub., New York.

    Google Scholar 

  • O’Dea, R.F., Viveros, 0.H., Axelrod, J., Aswanikumar, S. (1978). Nature 272, 262–265.

    Article  Google Scholar 

  • Parks, R.E., Jr., Brown, P.R., and Kong, C.M. (1973). Adv. Exp. Med. Biol. 41A; 117–127.

    Google Scholar 

  • Polmar, S.H., Wetzler, E.M., and Stern, R.C. (1975). Lancet 2, 743–751.

    Article  PubMed  CAS  Google Scholar 

  • Scholar, E.M., and Calabresi, P. (1973). Cancer Res. 33, 94–103.

    PubMed  CAS  Google Scholar 

  • Schumm, D.E., and Webb, T.E. (1975). Cell. Immunol. 15, 479–483.

    Article  PubMed  CAS  Google Scholar 

  • Scott, D.W., and Josephs, S.H. (1975). Cell. Immunol. 20, 64–68.

    Article  PubMed  CAS  Google Scholar 

  • Scott, D.W., and McKenzie, R.G. (1974). Cell. Immunol. 12, 61–65.

    Article  PubMed  CAS  Google Scholar 

  • Seeymiller, J.E., Watanabe, T. and Schreier, M. (1977). In Purine and Pyrimidine Metabolism. Ciba Foundation Symposium, 48.

    Google Scholar 

  • Slomiany, D.J., O’Dea, R.F., Condie, R.M., and Mirkin, B.L. (1982). Fed. Proc. 41, 1043.

    Google Scholar 

  • Snyder, F.F., Mendelsohn, J., and Seegmiller, J.E. (1976). J. Clin. Invest. 58, 654–666.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tsai, P. K. and Hogenkamp, H. P. (1983). Arch. Biochem. Biophys. 226:276–282.

    Google Scholar 

  • Zimmerman, T.P., Wolberg, G., Stopford, C.R., and Duncan, G.S. (1979). In Transmethylation (Ed. Usdin, E., Borchardt, R., and Creveliny, C.R.) Elsevier/North Holland, New York.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1985 The Contributors

About this chapter

Cite this chapter

Mirkin, B.L., Slomiany, D.J. (1985). Effects of Purines on Cell Growth and Differentiation. In: Stone, T.W. (eds) Purines. Satellite Symposia of the IUPHAR 9th International Congress of Pharmacology. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-07564-5_24

Download citation

Publish with us

Policies and ethics