Skip to main content

The Endogenously Formed Adenosine of the Brain: Its Status as a Regulatory Signal Appraised in Relation to Actions of Homocystein

  • Chapter
Purines

Abstract

Adenosine is so readily formed in the brain that for some time its quantity there was overestimated by a factor of 20 or more (Berne et al. 1974; Newman and McIlwain, 1977). Now, rapid fixation methods applied to the brain and to isolated cerebral tissues adequately prepared and maintained, give values of some 1 nmole adenosine/g: about the concomitant quantity of cyclic AMP, and less than one thousandth that of the ATP. Numerous circumstances that increase the content or output of the adenosine of cerebral tissues have been observed and collated (Newman and McIlwain, 1977; Arch and Newsholme, 1978) and include ischemia, hypoxia, excitation, adrenaline, noradrenaline and glutamate. By contrast, few circumstances diminish the content or output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arch, J.R.S. and Newsholme, E.A. (1978) Essays in Biochem. 14, 82–123.

    CAS  Google Scholar 

  • Berne, R.M., Rubio, R. and Curnish, R.R. (1974). Circ. Res., 35, 262–271.

    Article  CAS  Google Scholar 

  • Broch, O.J. and Ueland, P.M. (19βU). J. Neurochem. 35, 484–488.

    Google Scholar 

  • Cannon, W.B. (1929). Physiol. Rev. 9, 399–431.

    Google Scholar 

  • Dewhurst, I.C., Hagan, J.J., Morris, R.G.M. and Griffiths, R. (1983). J. Neurochem. 40, 752–757.

    Article  PubMed  CAS  Google Scholar 

  • Folbergrová, J. (1981). Neuroscience 6,•1405–1411.

    Google Scholar 

  • Fonlupt, P., Rey, C. and Pacheco, H. (1981). J. Neurochem. 36, 165–170.

    Article  PubMed  CAS  Google Scholar 

  • Fox, I.H. and Kelley, W.N. (1978). Ann. Rev. Biochem. 47, 655–686.

    Google Scholar 

  • Fredholm, B.B. (1980). Trends in Pharmacol. Sci. 1, 129–132.

    CAS  Google Scholar 

  • Fredholm, B.B. and Hedqvist, P. (1980) Biochem. Pharmacol. 29, 1635–1643.

    Article  PubMed  CAS  Google Scholar 

  • Kaeser, A.C., Rodnight, R. and Ellis, B.A. (1969). J. Neurol. Neurosurg. Psychiat., 32, 88–93.

    Google Scholar 

  • Mcllwain, H. (1952). Biochem. Soc. Sympos. 8, 27–43.

    Google Scholar 

  • Mcllwain, H. (1972). Biochem. Soc. Sympos. 36, 69–85.

    Google Scholar 

  • Mcllwain, H. and Bachelard, H.S. (1985). Biochemistry and the Central Nervous System. 5th edition, 600–609. Churchill Livingstone, London.

    Google Scholar 

  • Mcllwain, H. and Poll, J.D. (1983). Biochem. Soc. Bull. 5, (4), 33.

    Google Scholar 

  • Mcllwain, H. and Poll, J.D. (1984). Neurochem. Internat., in press.

    Google Scholar 

  • Montero, J.M. and Fes, J.B. (1982). J. Neurochem. 39, 982–989.

    Article  PubMed  CAS  Google Scholar 

  • Mudd, S.H. and Levy, H.L. (1978). In The Metabolic Basis of Inherited Disease. (eds. J.B. Stanbury, J.B. Wygarden and D.S. Fredrickson), 458–503. McGraw Hill, New York.

    Google Scholar 

  • Newby, A.C. (1984) Trends in Biochem. Sci. 9, 42–44.

    CAS  Google Scholar 

  • Newman, M. and Mcllwain, H. (1977). Biochem. J., 164, 131–137.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Phillis, J.W., Kostopoulos, G.K., and Limacher, J.J. (1975). Europ. J. Pharmacol. 30, 125–129.

    Article  CAS  Google Scholar 

  • Rabe, C.S. and McGee, R. (1983). J. Neurochem. 41, 1623–1634.

    Article  PubMed  CAS  Google Scholar 

  • Reddington, M. and Pusch, R. (1983). J. Neurochem. 40, 285–290.

    Article  PubMed  CAS  Google Scholar 

  • Rubio, R. and Berne, R.M. (1975). In Blood Flow and Metabolism (eds. A.M. Harper et al.) Churchill Livingstone, Edinburgh.

    Google Scholar 

  • Schrader, J. (1983). In Regulatory Functions of Adenosine (eds. R.M. Berne, T.W. Rall and R. Rubio) 133–156. Nijhof, Boston.

    Book  Google Scholar 

  • Scholefield, C.N. (1978). Brit. J. Pharmacol. 63, 239–244.

    Article  Google Scholar 

  • Stone, T.W. (1981). Neuroscience 6, 523–555.

    Article  PubMed  CAS  Google Scholar 

  • Stone, T.W. and Taylor, D.A. (1978). Brit. J. Pharmacol. 64, 369–374.

    Article  CAS  Google Scholar 

  • Ueland, P.M. and Saebo, J. (1979). Biochim. Biophys. Acta 587, 341–352.

    Article  PubMed  CAS  Google Scholar 

  • Williams, M. (1984). In Handbook of Neurochemistry (ed. Lajtha, A.) 6, 1–26. Plenum, New York.

    Book  Google Scholar 

  • Wuerthele, S.E., Yasuda, R.P., Freed, W.J. and Hoffer, B.J. (1982). Life Sci. 31, 2683–2692.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1985 The Contributors

About this chapter

Cite this chapter

McIlwain, H. (1985). The Endogenously Formed Adenosine of the Brain: Its Status as a Regulatory Signal Appraised in Relation to Actions of Homocystein. In: Stone, T.W. (eds) Purines. Satellite Symposia of the IUPHAR 9th International Congress of Pharmacology. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-07564-5_22

Download citation

Publish with us

Policies and ethics