Skip to main content
Book cover

Purines pp 107–114Cite as

Palgrave Macmillan

Metabolism and Release of Purines from Nervous Tissue

  • Chapter
  • 120 Accesses

Abstract

During the past years the number of biological roles proposed for adenosine and for precursor adenine nucleotides in the central nervous system has increased considerably. In addition to its role in intermediary metabolism, adenosine displays a number of receptor-mediated physiological actions which include dilatation of cerebral vesseis (Winn et al. 1981a). Adenosine also acts as a neuromodulator or neurotransmitter, inhibiting neuronal firing (Phillis et al. 1979) and synaptic transmission (Kuroda et al. 1978) as well as altering cyclic AMP concentrations in brain tissues (Sattin and Rail 1970; Daiy, 1977). In addition the relatively selective ability of methylxanthines such as caffeine and theophylline to block effects of adenosine on neuronal firing and cvciic AMP formation. suggest that pharmacological actions of these widely used substances may be mediated by blockade of central adenosine receptors (Snyder et al. 1981). Such receptors have been visualized by autoradiography on axon terminals of excitatory neurons (Goodman et al. 1983). Thus adenosine properties are those of local hormone which is released from the nerve cells. Indeed, a release of adenosine derivatives that Is accelerated by electrical stimulation has been observed from Isolated brain tissue (Pull and Mcilwain 1972a).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwai, R. P. and Parks, R. E. (1977). Biochem. J., 26, 663.

    Google Scholar 

  • Arch, J. R. S. and Newshoime, E. A. (1978). Essays in Biochemistry. 14, 82–123.

    PubMed  CAS  Google Scholar 

  • Atkinson. D. E. (1968). Biochemistry. 7, 4030–4034.

    Article  PubMed  Google Scholar 

  • Barberis, C., Daudet, F., Charriere. B., Guibert, B. and Leviei, V.

    Google Scholar 

  • (1983). Neuroscience Lett., 41, 179–182.

    Google Scholar 

  • Barberis. C., Guibert. B., Daudet, F., Charriere, B. and Leviel, V. (1984). Neurochem. Internat., 6, 545-bo i.

    Google Scholar 

  • Barberis. C. and Mcllwain. H. (1976). J. Neurochem. 26. 1015–1021.

    Article  Google Scholar 

  • Barberis. C., Minn. A. and Gayet. J. (1981). J. Neurochem, 36, 347–354.

    Article  PubMed  Google Scholar 

  • Bender, A. S. Wu. P. H. and Phillis, J. W. (1980). J. Neurochem, 36, 851–880.

    Google Scholar 

  • Burger. R. M. and Lowenstein. J. M. (1970). J. Biochem. 245, 6274.

    Google Scholar 

  • Burnstock. G. (1979). In Physiological and Regulatory Functions of Adenosine and Adenine Nucleotides. (eds. H. P. Baer and G. I. Drummond). Raven Press. New York.

    Google Scholar 

  • Daly. J. ( 1977). Cyclic nucleotides in the nervous system. Plenum Press. New York.

    Google Scholar 

  • Davai, J. L. and Barberis. C. (1981). Biochem. Pharmacol., 30. 2559–256 7.

    Google Scholar 

  • Daval, J. L. Barberis, C. and Gayet, J. (1980). Brain Res. 181, 161–174.

    Article  PubMed  CAS  Google Scholar 

  • Fox, I. V. and Kelley. W. N. (1978). Ann. Rev. Biochem., 47, 655–686.

    Google Scholar 

  • Fredholm, B. B. and Hedquist. P. ( 1980) Blochem. Pharmacol. 29. 1635–1643.

    Google Scholar 

  • Fredholm, B. B. and Vernet. L. (1979) Acta physiol. scand. 106. 97–107.

    Google Scholar 

  • Goodman. R. R., Kuhar, M. J., Hester. L. and Snyder, S. H. (1983). Science. 220, 967–969.

    Google Scholar 

  • Hollins, C. and Stone. T. W. (1980). J. Physiol. ( Lond. ), 303. 73–82.

    Google Scholar 

  • Huang, M. and Daly, J. W. (1974). J. Neurochem. 23, 393–404.

    Article  PubMed  CAS  Google Scholar 

  • Itoh, R. (1981). Biochem. Biophys. Acta, 659, 31–37.

    Google Scholar 

  • Jhamandas, K. and Dumbrille. A. (1980). Can. J. Physiol. Pharmcol., 58, 1262–1278.

    Google Scholar 

  • Kuroda. Y. and Mcliwain. H. (1974). J. Neurochem., 22. 691–699.

    Google Scholar 

  • Kuroda, Y., Saito. M. and Kobayashi, K. (1976). Brain Res. 109, 196–201.

    Google Scholar 

  • Lee. K. Schubert, P., Gribkoff. V., Sherman, B. and Lynch. G. (1982). J. Neurochem. 38, 80–83.

    Article  PubMed  Google Scholar 

  • Mannery. J. F. and Dryden, E. E. (1979). in Physiological and Regulatory Functions of Adenosine and Adenine Nucleotides (eds. H. P. Baer and G. I. Drummond). Raven Press, New York.

    Google Scholar 

  • McIlwain, H. ( 1973) in Adenosine in Neurohumoral and Regulatory Poles in the Brain (eds. Genazzani. E. and Herken. H. ) Springer Verlag, Berlin.

    Google Scholar 

  • Mcllwain, H. and Bachelard, H. (1971). Biochemistry of the central nervous systems. Churchill Livingstone, London.

    Google Scholar 

  • Montero. J. M. and Fes, J. B. (1982). J. Neurochem. 39. 982–989. Morimoto, K., Tagawa. K., Hayakawa, T., Watanabe. F., Mogami. H. (1982). J. Neurochem., 38, 833–835.

    Article  Google Scholar 

  • Newman, M. and Mcliwain, H. (1977). Biochem. J., 164, 131–137.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nyman. M. and Whittaker. V. P. (1963). Biochem. J., 87, 248–255.

    Article  PubMed  Google Scholar 

  • Perkins, M. N. and Stone, T. W. (1983). Br. J. Pharmac. 80. 263–267.

    Article  CAS  Google Scholar 

  • Phillis, J. W., Edstrom, J. P., Kostopoulos. G. K. and Kirkpatrick, J. R. (1979). Canad. J. Physiol. Pharmacol. 57. 1289–1312.

    Google Scholar 

  • Phillis, J. W. and Wu. P. H. (1981). Progress in Neurobiology. 16, 187–239.

    Google Scholar 

  • Pons. F., Bruns, R. F. and Daly, J. W. (1980). J. Neurochem., 34, 1319–1323.

    Article  Google Scholar 

  • Pull. I. and McIlwain, H. ( 1972 a). Biochem. J. 126, 965–973.

    Google Scholar 

  • Pull. I. and Mcliwain, H. ( 1972 b). Biochem. J. 130. 975–981.

    Google Scholar 

  • Pull. I. and Mcllwain. H. (1973). Biochem. J. 136, 893–901.

    Article  Google Scholar 

  • Pull. I. and Mciiwain. H. (1974). Biochem. J., 144, 37–41.

    Article  Google Scholar 

  • Reddington. M. and Pusch. R. (1983). J. Neurochem. 40, 285–290.

    Article  PubMed  Google Scholar 

  • Ritchie, J. M. and Straub. R. W. (1979). J. Physiol. ( Lond. ), 287. 315–327.

    Google Scholar 

  • Rubio. R. Berne. R. M., Bockman, E. L. and Curnish, R. R. (1975). Am. J. Physiol., 228, 1896–1902.

    Google Scholar 

  • Sattin. A. and Rail, T. W. (1970). Molec. Pharmacol. 6, 13–23.

    Google Scholar 

  • Schrader, J., Wahl, M., Kuschinsky. W; and Kreutzberg. G. W. (1980).

    Google Scholar 

  • Pfluegers Arch., 387, 245–251.

    Google Scholar 

  • Schubert. P. and Kreutzberg, G. W. (1974). Brain Res. 76, 526–530.

    Article  Google Scholar 

  • Schubert. P. and Kreutzberg, G. W. (1975). Brain Res., 85, 317–319.

    Google Scholar 

  • Schultz, V. and Lowenstein. J. M. (1978). J. Biol. Chem., 253, 1938–1943.

    Google Scholar 

  • Shimizu. H. Tanaka. S, and Kodama, T. (1972). J. Neurochem., 19. 687–698.

    Article  Google Scholar 

  • Skolnick, P. Nimitkitpaisan, Y., Stalvey, L. and Daly, J. W. (1978). J.

    Google Scholar 

  • Neurochem., 30, 1519–1582.

    Google Scholar 

  • Snyder, S. H. Katims, J. J., Annau. Z. Bruns. R. F. and Daly. J. W. (1981). Proc. Natl. Acad. Sc. USA. 78. 3260–3264.

    Google Scholar 

  • Stone, T. W. ( 1981). Neuroscience, 6. 523–555.

    Article  PubMed  CAS  Google Scholar 

  • Straub, R. W; (1979). Trends. Pharmacol. Sci., 1. 106–109.

    Google Scholar 

  • Sulakhe. P. V. and Phillis. J. W. (1975). Life Sci., 17. 551–556.

    Article  PubMed  Google Scholar 

  • Trams, E. G. and Lauter, C. J. (1975). Biochem. J., 152, 681–687.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Uyamada. Y., Goto, A. and Ogasawara. N. (1980). Biochem. Biophys. Acta., 616, 199–207.

    Google Scholar 

  • White, T. D. (1977). Nature (Lond.). 267. 67–68.

    Article  CAS  Google Scholar 

  • Winn, H. R., Rubio. R. and Berne. R. M. (1979). Circ. Res. 45, 486–492.

    Article  PubMed  CAS  Google Scholar 

  • Winn, H. R., Rubio, R. and Berne. R. M. ( 1981 a). J. Cerebral Blood Flow Metab., 1, 239–244.

    Google Scholar 

  • Winn, H. R., Rubio. R. and Berne. R. M. (1981 b). Amer. J. Physiol. 241. H 235-H 242.

    Google Scholar 

  • Winn. H; R., Welsh, J. E. Rubio. R. and Berne, R. (1980). Circ.

    Google Scholar 

  • Res., 47. 568–577.

    Google Scholar 

  • Wu, P. H. and Phillis, J. W. (1978). Neurochem. Res. 3. 563–57.1,

    Google Scholar 

  • Zetterstrom. T., Vernet, L., Ungerstedt. U. Tossman. U. Jonzon. B. and Frodholm, B, B. (1982) Neuroscience Lett. 29. 111–115.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1985 The Contributors

About this chapter

Cite this chapter

Barberis, C., Leviel, V., Daval, J.L. (1985). Metabolism and Release of Purines from Nervous Tissue. In: Stone, T.W. (eds) Purines. Satellite Symposia of the IUPHAR 9th International Congress of Pharmacology. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-07564-5_11

Download citation

Publish with us

Policies and ethics