Skip to main content

Analysis of local anaesthetics

  • Chapter

Abstract

Modern regional anaesthesia is practised with a relatively small armamentarium of agents. These can be divided into esters of the procaine type and amides of the lignocaine type; their chemical structures are shown in Table 7.1. Of the compounds. listed, bupivacaine and lignocaine are currently the most widely used in anaesthetic practice. The former is especially popular for providing epidural analgesia during labour and vaginal delivery, owing to its relatively long duration of action and an ability to produce a marked differential blockade favouring sensory rather than motor loss. Etidocaine is a new, long-acting analogue but a tendency to produce a differential motor block largely confines its use to surgical anaesthesia. Prilocaine has fallen out of favour for epidural anaesthesia because of methaemoglobinaemia associated with high doses, although a relatively low propensity for central-nervous-system toxicity commends it for peripheral nerve blocks and intravenous regional anaesthesia. Like lignocaine it is widely used in dentistry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abernathy, D. R., Greenblatt, D. J., and Ochs, H. R. (1982). Lidocaine determination in human plasma with application to single low-dose pharmacokinetic studies. J. Chromatogr. 232, 180–5.

    Article  Google Scholar 

  • Adams, R. F., Vandenmark, F. L., and Schmidt, G. (1976). The simultaneous determination of lidocaine and procainamide in serum by use of high-pressure liquid chromatography. Clin. Chim. Acta 69, 515–24.

    Article  CAS  PubMed  Google Scholar 

  • Adjepon-Yamoah, K. K., and Prescott, L. F. (1974). Gas-liquid chromatographic estimation of lignocaine, ethylglycylxylidide, glycylxylidide and 4-hydroxy xylidine in plasma and urine. J. Pharm. Pharmac. 26, 889–93.

    Article  CAS  Google Scholar 

  • Ahmad, K., and Medzihradsky, F. (1971). Distribution of lidocaine in blood and tissues after single doses and steady infusion. Res. Comm. Chem. Path. Pharmac. 2, 813–28.

    CAS  Google Scholar 

  • Alkalay, D., Carlsen, S., and Wagner, W. E. (1981). Quantitation of the local anesthetic dibucaine with gas chromatography/mass spectrometry. Analyt. Lett. 14, 1745–56.

    Article  CAS  Google Scholar 

  • Ambre, J. J., Ruo, T.-I., Smith, G. L., Backes, D., and Smith, C. M. (1982). Ecgonine methyl ester, a major metabolite of cocaine. J. Analyt. Toxicol. 6, 26–9.

    Article  CAS  Google Scholar 

  • Asling, J. H., Shnider, S. M., Wilkinson, G. R., and Way, E. L. (1969). Gas chromatographic determination of mepivacaine in capillary blood. Anesthesiology 31, 458–61.

    Article  CAS  Google Scholar 

  • Barnett, G., Hawks, R., and Resnick, R. (1981). Cocaine pharmacokinetics in humans. J. Ethnopharmac. 3, 353–66.

    Article  CAS  Google Scholar 

  • Beckett, A. H., Boyes, R. N., and Appleton, P. J. (1966). The metabolism and excretion of lignocaine in man. J. Pharm. Pharmac. 18 (suppl.), 76–81S.

    Article  CAS  Google Scholar 

  • Beckett, A. H., Boyes, R. N., and Parker, J. B. R. (1965). Determination of lignocaine in blood and urine in human subjects undergoing local analgesic procedures. Anaesthesia 20, 294–8.

    Article  CAS  Google Scholar 

  • Benowitz, N., and Rowland, M. (1973). Determination of lidocaine in blood and tissues. Anesthesiology 39, 639–41.

    Article  CAS  PubMed  Google Scholar 

  • Berlin, A., Persson, B.-A., and Belfrage, P. (1973). Micromethod for the determination of bupivacaine in maternal and foetal blood during obstetric analgesia. J. Pharm. Pharmac. 25, 466–9.

    Article  CAS  Google Scholar 

  • Blankenbaker, W. L., Di Fazio, C. A., and Berry, F. A. (1975). Lidocaine and its metabolites in the newborn. Anesthesiology 42, 325–30.

    Article  CAS  PubMed  Google Scholar 

  • Bouche, R., and Minetti, R. (1974). Quantitative micro-determination of 2,6-pipecolylxylidide by gas-liquid chromatography. J. Chromatogr. 90, 191–4.

    Article  CAS  PubMed  Google Scholar 

  • Boyes, R. N. (1975). A review of the metabolism of amide local anaesthetics. Br. J. Anaesth. 38, suppl., 225–30.

    Google Scholar 

  • Braid, D. P., and Scott, D. B. (1965). The systemic absorption of local analgesic drugs. Ibid. 37, 394–404.

    Article  CAS  PubMed  Google Scholar 

  • Breuer, H. (1982). Gas-liquid chromatographic determination of lidocaine in cat plasma using mepivacaine as internal standard. J. Chromatogr. 231, 65–72.

    Article  CAS  PubMed  Google Scholar 

  • Bridenbaugh, P. O., Tucker, G. T., Moore, D. C., Bridenbaugh, L. D., and Thompson, G. E. (1974). Preliminary clinical evaluation of etidocaine (Duranest): a new long-acting local anesthetic agent. Acta Anaesth. Scand. 18, 165–71.

    Article  CAS  PubMed  Google Scholar 

  • Brodie, B. B., Lief, P. A., and Poet, R. (1948). The fate of procaine in man following its intravenous administration and methods for the estimation of procaine and diethylaminoethanol. J. Pharmac. Exper. Therap. 94, 366–95.

    Google Scholar 

  • Bromage, P. R., and Robson, J. G. (1961). Concentrations of lignocaine in the blood after intravenous, intramuscular, epidural and endotracheal administration. Anaesthesia 16, 461–78.

    Article  CAS  PubMed  Google Scholar 

  • Budd, R. D. (1981). Cocaine radioimmunoassay-structure versus reactivity. Clin. Toxicol. 18, 773–82.

    Article  CAS  PubMed  Google Scholar 

  • Burm, A. G. L., Van Kleef, J. W., and De Boer, A. G. (1982). Gas chromatographic determination of bupivacaine in plasma using a support coated open tubular column and a nitrogen-selective detector. Anesthesiology 57, 527–9.

    Article  CAS  PubMed  Google Scholar 

  • Caille, G., LeLorier, J., Latour, Y., and Besner, J. G. (1977). GLC determination of lidocaine in human plasma. J. Pharm. Sci. 66, 1383–5.

    Article  CAS  PubMed  Google Scholar 

  • Caldwell, J., Moffatt, J. R., Smith, R. L., Lieberman, B. A., Beard, R. W., Snedden, W., and Wilson, B. W. (1977). Determination of bupivacaine in human fetal and neonatal blood samples by quantitative single ion monitoring. Biomed. Mass Spectrom. 4, 322–5.

    Article  CAS  PubMed  Google Scholar 

  • Calvo, R., Carlos, R., and Erill, S. (1980). Effects of disease and acetazolamide on procaine hydrolysis by red cell enzymes. Clin. Pharmac. Ther. 27, 175–83.

    Article  Google Scholar 

  • Cameron, J. D. (1974). The gas chromatographic determination of plasma concentrations of some local anesthetics using a nitrogen detector. Clin. Chim. Acta 56, 307–9.

    Article  CAS  PubMed  Google Scholar 

  • Chinn, D. M., Crouch, D. J., Peat, M. A., Finkle, B. S., and Jennison, T. A. (1980). Gas chromatography-chemical ionization mass spectrometry of cocaine and its metabolites in biological fluids. J. Analyt. Toxicol. 4, 37–42.

    Article  CAS  Google Scholar 

  • Clarke, E. G. C. (1969). Isolation and Identification of Drugs. Pharmaceutical Press, London.

    Google Scholar 

  • Cobb, M. E., Buckley, N., Hu, M. W., Miller, J. G., Singh, P., and Schneider, R. S. (1977). Homogeneous enzyme immunoassay for lidocaine in serum. Clin. Chem. 23, 1161.

    Google Scholar 

  • Cone, E. J., Buchwald, W. F., and Darwin, W. D. (1982). Analytical controls in drug metabolism studies. 2: Artifact formation during chloroform extraction of drugs and metabolites with amine substituents. Drug Metab. Disp. 10, 561–7.

    CAS  Google Scholar 

  • Cousins, M. J., and Bridenbaugh, P. O. (eds) (1980). Neural Blockade in Clinical Anesthesia and Management of Pain. Lippincott, Philadelphia.

    Google Scholar 

  • Covino, B. G., and Vassallo, H. G. (1976). Local Anesthetics. Mechanisms of Action and Clinical Use. Grune and Stratton, New York.

    Google Scholar 

  • Dawkins, C. J. M. (1969). An analysis of the complications of extradural and caudal block. Anaesthesia 24, 554–63.

    Article  CAS  PubMed  Google Scholar 

  • De Boer, A. G., Breimer, D. D., Pronk, J., and Gubbens-Stibbe, J. M. (1980). Rectal bioavailability of lidocaine in rats: absence of significant first-pass elimination. J. Pharm. Sci. 69, 804–7.

    Article  PubMed  Google Scholar 

  • De Gelder, D. J., De Leede, L. G. J., and De Boer, A. G. (1981). Assay of lidocaine and 5 metabolites by capillary gas chromatography. Proc. 41st Int. Congr. Pharmaceutical Sciences, Vienna, abstr. No. 5.

    Google Scholar 

  • De Jong, R. H. (1977). Local Anesthetics, 2nd ed. Charles C. Thomas, Springfield.

    Google Scholar 

  • Dennhardt, R., and Konder, H. (1980). Metabolite von bupivacain beim menschen. Regional Anaesth. 3, 25–6.

    Google Scholar 

  • Desch, G., Cavadore, D., Jullien, Y., Mercier, L., Descomps, B., and De Rodez, M. (1981). Analg. Anesth. Rean. 2, 158–68.

    Google Scholar 

  • DiFazio, C. A., and Brown, R. E. (1971). The analysis of lidocaine and its postulated metabolites. Anesthesiology 34, 86–8.

    Article  CAS  PubMed  Google Scholar 

  • Dvorchik, B. H., Miller, S. H., and Graham, W. P. (1977). Gas chromatographic determination of cocaine in whole blood and plasma using a nitrogen-sensitive flame ionization detector. J. Chromatogr. 135, 141–8.

    Article  CAS  PubMed  Google Scholar 

  • Edhorn, G. A. (1971). Determination of lidocaine in whole blood by gas chromatography. Canad. Anaesth. Soc. J. 18, 189–97.

    Article  CAS  PubMed  Google Scholar 

  • Evans, M. A., and Moriarty, T. (1980). Analysis of cocaine and cocaine metabolites by high pressure liquid chromatography. J. Analyt. Toxicol. 4, 19–22.

    Article  CAS  Google Scholar 

  • Fish, F., and Wilson, W. D. C. (1969a). Gas chromatographic determination of morphine and cocaine in urine. J. Chromatogr. 40, 164–8.

    Article  CAS  PubMed  Google Scholar 

  • Fish, F., and Wilson, W. D. C. (1969b). Excretion of cocaine and its metabolites in man. J. Pharm. Pharmac. 21, 135–8S.

    Article  CAS  Google Scholar 

  • Flanagan, R. J., Storey, G. C. A., Bhamra, R. K., and Jane, I. (1982). High-performance liquid chromatographic analysis of basic drugs on silica columns using non-aqueous ionic eluents. J. Chromatogr. 247, 15–37.

    Article  CAS  Google Scholar 

  • Fletcher, S. M., and Hancock, V. S. (1981). Potential errors in benzoylecgonine and cocaine anatysis. Ibid. 206, 193–5.

    Article  CAS  PubMed  Google Scholar 

  • Foldes, F. F., Davidson, G. N., Duncalf, D., and Kuwabara, S. (1965). The intravenous toxicity of local anesthetic agents in man. Clin. Pharmac. Ther. 6, 328–35.

    Article  CAS  Google Scholar 

  • Fukuda, J., and Momose, A. (1975). Determination of tetracaine N-oxide in urine by gas chromatography. Yakugaku Zasshi 95, 480–83.

    CAS  PubMed  Google Scholar 

  • Gal, J., Freedman, M. D., Kumar, E., and Freed, C. R. (1981). A rapid and simple microassay for lidocaine in human blood plasma using gas-liquid chromatography with nitrogen detection. Therap. Drug Monit. 3, 177–80.

    Article  CAS  Google Scholar 

  • Garland, W. A., Trager, W. F., and Nelson, S. D. (1974). Direct (non-chromatographic) quantification of drugs and their metabolites from human plasma utilizing chemical ionization mass spectrometry and stable isotope labeling: quinidine and lidocaine. Biomed. Mass Spectrom. 1, 124–9.

    Article  CAS  PubMed  Google Scholar 

  • Goehl, T. J., Davenport, J. B., and Stanley, M. J. (1973). Distribution, biotransformation and excretion of bupivacaine in the rat and the monkey. Xenobiotica 3, 761–72.

    Article  CAS  PubMed  Google Scholar 

  • Goto, S., and Itano, T. (1979). Hydrolysis of lidocaine and its metabolites. Yakugaku Zasshi 99, 146–54.

    CAS  PubMed  Google Scholar 

  • Graffeo, A. P., Lin, D. C. K., and Foltz, R. L. (1976). Analysis of benzoylecgonine in urine by high-performance liquid chromatography and gas chromatography-mass spectrometry. J. Chromatogr. 126, 717–22.

    Article  CAS  PubMed  Google Scholar 

  • Green, R. L., Lewis, J. E., Kraus, S. J., and Frederickson, E. L. (1974). Elevated plasma procaine concentrations after administration of procaine penicillin G. New Engl. J. Med. 291, 223–6.

    Article  CAS  PubMed  Google Scholar 

  • Halkin, H., Meffin, P., Melmon, K. L., and Rowland, M. (1975). Influence of congestive heart failure on blood levels of lidocaine and its active monodeethylated metabolite. Clin. Pharmac. Ther. 17, 669–76.

    Article  CAS  Google Scholar 

  • Hawkins, J. D., Bridges, R. R., and Jennison, T. A. (1982). A single-step assay for lidocaine and its major metabolite, monoethylglycinexylidide, in plasma by gas-liquid chromatography and nitrogen phosphorus detection. Therap. Drug Monit. 4, 103–106.

    Article  CAS  Google Scholar 

  • Hawks, R. L., Kopin, I. J., Colburn, R. W., and Thoa, N. B. (1974). Norcocaine: a pharmacologically active metabolite of cocaine found in brain. Life Sci. 15, 2189–95.

    Article  CAS  PubMed  Google Scholar 

  • Heath, M. L. (1982). Deaths after intravenous regional anaesthesia. Br. Med. J. 2, 913–4.

    Article  Google Scholar 

  • Hignite, C. E., Tschanz, C., Steiner, J., Huffman, D. H., and Azarnoff, D. L. (1978). Quantitation of lidocaine and its deethylated metabolites in plasma and urine by gas chromatography-mass fragmentography. J. Chromatogr. 161, 243–9.

    Article  CAS  PubMed  Google Scholar 

  • Hill, J., Roussin, A., LeLorier, J., and Caille, G. (1980). High-pressure liquid chromatographic determination of lidocaine and its active deethylated metabolites. J. Pharm. Sci. 69, 1341–3.

    Article  CAS  PubMed  Google Scholar 

  • Holt, D. W., Flanagan, R. J., Hayler, A. M., and Loizou, M. (1979a). Simple gas-liquid chromatographic method for the measurement of mexiletine and lignocaine in bloodplasma or serum. J. Chromatogr. 169, 295–301.

    Article  CAS  PubMed  Google Scholar 

  • Holt, D. W., Loizou, M., and Wyse, R. K. (1979b). Gas-liquid chromatographic measurement of lignocaine in small samples of canine myocardium after enzymatic digestion. J. Clin. Pathol. 32, 225–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hucker, H. B., and Stauffer, S. C. (1976). GLC analysis of lidocaine in plasma using a novel nitrogen-sensitive detector. J. Pharm. Sci. 65, 926–7.

    Article  CAS  PubMed  Google Scholar 

  • Irgens, T. R., Henderson, W. M., and Shelver, W. H. (1976). GLC analysis of lidocaine in blood using an alkaline flame-ionization detector. Ibid. 65, 608–610.

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa, T. (1974). Determination of local anesthetics in the blood and cerebrospinal fluid by gas chromatography. Jap. J. Anesthesiol. 23, 246–50.

    CAS  Google Scholar 

  • Jain, S., and Johnston, A. (1979). The measurement of lignocaine at low concentrations in plasma, a comparison of gas liquid chromatography with enzyme immunoassay. Br. J. Clin. Pharmac. 8, 598–9.

    Article  CAS  Google Scholar 

  • Jatlow, P. I., and Bailey, D. N. (1975). Gas-chromatographic analysis for cocaine in human plasma, with use of a nitrogen detector. Clin. Chem. 21, 1918–21.

    CAS  PubMed  Google Scholar 

  • Jatlow, P. I., Van Dyke, C., Barash, P., and Byck, R. (1978). Measurement of benzoylecgonine and cocaine in urine, separation of various cocaine metabolites using reversedphase high-performance liquid chromatography. J. Chromatogr. 152, 115–21.

    Article  CAS  PubMed  Google Scholar 

  • Javaid, J. I., Dekirmenjian, H., Davis, J. M., and Schuster, C. R. (1978). Determination of cocaine in human urine, plasma and red blood cells by gas-liquid chromatography. Ibid. 152, 105–13.

    Article  CAS  PubMed  Google Scholar 

  • Jindal, S. P., and Vestergaard, P. (1978). Quantitation of cocaine and its principal metabolite, benzoylecgonine, by GLC-mass spectrometry using stable isotope labeled analogs as internal standards. J. Pharrn Sci. 67, 811–4.

    Article  CAS  Google Scholar 

  • Jindal, S. P., Lutz, T., and Vestergaard, P. (1978). Mass spectrometric determination of cocaine and its biologically active metabolite, norcocaine, in human urine. Biomed. Mass Spectrom. 5, 658–63.

    Article  CAS  PubMed  Google Scholar 

  • Kacprowicz, A. T. (1982). Improved gas-chromatographic determination of lignocaine in plasma. Clin. Chem. 28, 545–6.

    CAS  PubMed  Google Scholar 

  • Karch, F. E., and Chmielewski, K. F. (1981). GLC assay for lidocaine in human plasma. J. Pharm. Sci. 70, 229–30.

    Article  CAS  PubMed  Google Scholar 

  • Kaul, B., Millian, S. J., and Davidow, B. (1976). The development of a radioimmunoassay for detection of cocaine metabolites. J. Pharmac. Exper. Ther. 199, 171–8.

    CAS  Google Scholar 

  • Keenaghan, J. B. (1968). The determination of lidocaine and prilocaine in whole blood by gas chromatography. Anesthesiology 29, 110–2.

    Article  CAS  PubMed  Google Scholar 

  • Keenaghan, J. B., and Boyes, R. N. (1972). The tissue distribution, metabolism and excretion of lidocaine in rats, guinea pigs, dogs and man. J. Pharmac. Exper. Ther. 180, 454–63.

    CAS  Google Scholar 

  • Kline, B. J., and Martin, M. F. (1978). Simplified GLC assay for lidocaine in plasma. J. Pharm. Sci. 67, 887–8.

    Article  CAS  PubMed  Google Scholar 

  • Kogan, M. J., Verebey, K. G., DePace, A. C., Resnick, R. B., and Mulé, S. J. (1977). Quantitative determination of benzoylecgonine and cocaine in human biofluids by gas-liquid chromatography. Analyt. Chem. 49, 1965–9.

    Article  CAS  Google Scholar 

  • Krogh, K., and Jellum, E. (1981). Urinary metabolites of chloroprocaine studied by combined gas chromatography-mass spectrometry. Anesthesiology 54, 329–32.

    Article  Google Scholar 

  • Krogh, K., and Jellum, E. (1982). Urinary metabolites of chloroprocaine. Ibid. 56, 483–4.

    Article  Google Scholar 

  • Kruczek, M. E. (1981). A rapid gas-liquid chromatographic determination of serum lidocaine using a nitrogen-phosphorus specific detector. J. Pharmac. Methods. 5, 137–41.

    Article  CAS  Google Scholar 

  • Kuhnert, B. R., Kuhnert, P. M., and Reese, A. L. P. (1981a). Measurements of 2-chloro-2-chloroprocaine in obstetric patients and their neonates after epidural anesthesia. Anesthesiology 53, 21–5.

    Article  Google Scholar 

  • Kuhnert, B. R., Kuhnert, P. M., and Reese, A. L. P. (1981a). Measurements of 2-chloroprocaine in plasma by selected ion monitoring. J. Chromatogr. 224, 488–91.

    Article  CAS  Google Scholar 

  • Kuhnert, B. R., Kuhnert, P. M., and Reese, A. L. P. (1982). Urinary metabolites of chloroprocaine. Anaesthesiology 56, 483.

    Article  CAS  Google Scholar 

  • Kuhnert, P. M., Kuhnert, B. R., Stitts, J. M., and Gross, T. L. (1981b). The use of a selected ion monitoring technique to study the disposition of bupivacaine in mother, fetus and neonate following epidural anesthesia for Cesarian section ibid. 55, 611–17.

    Article  CAS  Google Scholar 

  • Lagerstrom, P.-O., and Persson, B.-A. (1978). Liquid chromatography in the monitoring of plasma levels of antiarrhythmic drugs. J. Chromatogr. 149, 331–40.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K. Y., Nurok, D., Zlatkis, A., and Karmen, A. (1978). Simultaneous determination of antiarrhythmia drugs by high-performance thin-layer chromatography. Ibid. 158, 403–10.

    Article  CAS  PubMed  Google Scholar 

  • Lehane, D. P., Wissert, P. J., Menyharth, P., Levy, A. L., and Kukucka, A. (1979). Enzyme immunoassay for serum lidocaine in antiarrhythmic therapy. Clin. Chem. 25, 614–16.

    CAS  PubMed  Google Scholar 

  • Lesko, L. J., Ericson, J., Ostheimer, G., and Marion, A. (1980). Simultaneous determination of bupivacaine and 2,6-pipecoloxylidide in serum by gas-liquid chromatography. J. Chromatogr. 182, 226–31.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Budd, R. D., and Griesemer, E. C. (1982). Study of the stability of cocaine and benzoylecgonine, its major metabolite, in blood samples. Ibid. 248, 318–20.

    Article  CAS  PubMed  Google Scholar 

  • Lurie, A. O., and Weiss, J. B. (1970). Blood concentration of mepivacaine and lidocaine in mother and baby after epidural anesthesia. Amer. J. Obstet. Gynecol. 106, 850–6.

    Article  CAS  Google Scholar 

  • Maes, R., Kananen, G., and Sunshine, I. (1969). Determination of mepivacaine in blood and urine. Anesthesiology 30, 657–9.

    Article  CAS  PubMed  Google Scholar 

  • Masoud, A. N., and Krupski, D. M. (1980). High-performance liquid chromatographic analysis of cocaine in human plasma. J. Analyt. Toxicol. 4, 305–10.

    Article  CAS  Google Scholar 

  • Masoud, A. N., Scratchley, G. A., Stohs, S. J., and Wingard, D. W. (1978). Simultaneous determination of lidocaine (lignocaine) and thiopental in plasma using high pressureliquid chromatography. J. Liq. Chromatog. 1, 607–16.

    Article  CAS  Google Scholar 

  • Mather, L. E., and Cousins, M. J. (1979). Local anaesthetics and their current clinical use. Drugs 18, 185–205.

    Article  CAS  PubMed  Google Scholar 

  • Mather, L. E., and Tucker, G. T. (1974). Meperidine and other basic drugs: General method for their determination in plasma. J. Pharm. Sci. 63, 306–7.

    Article  CAS  PubMed  Google Scholar 

  • McCurdy, H. H. (1980). Quantitation of cocaine and benzoylecgonine after Jetube extraction and derivatization. J. Analyt. Toxicol. 4, 82–5.

    Article  CAS  Google Scholar 

  • Medzihradsky, F., and Dahlstrom, P. J. (1975). Concurrent determination of narcotic drugs in plasma by gas-liquid chromatography. Pharmac. Res. Commun. 7, 55–69.

    Article  CAS  Google Scholar 

  • Mihaly, G. W., Moore, R. G., Thomas, J., Triggs, E. J., Thomas, D., and Shanks, C. A. (1978). The pharmacokinetics and metabolism of the anilide local anaesthetics in neonates. 1: Lignocaine. Eur. J. Clin. Pharmac. 13, 143–52.

    Article  CAS  Google Scholar 

  • Miller, E., Walberg, C., and Haywood, L. J. (1981). Rapid assessment of lidocaine in cardiac patients by enzyme immunoassay. Ther. Drug Monit. 3, 85–9.

    Article  CAS  PubMed  Google Scholar 

  • Momose, A., and Fukuda, J. (1976). A new metabolite of tetracaine. Chem. Pharm. Bull. 24, 1637–40.

    Article  CAS  PubMed  Google Scholar 

  • Morgan, D. J., Cousins, M. J., McQuillan, D., and Thomas, J. (1977). Disposition and placental transfer of etidocaine in pregnancy. Eur. J. Clin. Pharmac. 12, 359–365.

    Article  CAS  Google Scholar 

  • Mulé, S. J., Jukofsky, D., Kogan, M., De Pace, A., and Verebey, K. (1977). Evaluation of the radioimmunoassay for benzoylecgonine (a cocaine metabolite) in human urine. Clin. Chem. 23, 796–801.

    PubMed  Google Scholar 

  • Naito, E., Matsuki, M., and Shimoji, K. (1977). A simple method for gas chromatographic determination of lidocaine in tissues. Anesthesiology 47, 466–7.

    Article  CAS  PubMed  Google Scholar 

  • Narang, P. K., Crouthamel, W. G., Carliner, N. H., and Fisher, M. L. (1978). Lidocaine and its active metabolites. Clin. Pharmac. Ther. 24, 654–62.

    Article  CAS  Google Scholar 

  • Nation, R. L., Triggs, E. J., and Selig, M. (1976). Gas chromatographic method for the quantitative determination of lidocaine and its metabolite monoethylglycinexylidide in plasma. J. Chromatogr. 116, 188–93.

    Article  CAS  PubMed  Google Scholar 

  • Nation, R. L., Peng, G. W., and Chiou, W. L. (1979). High-performance liquid chromatographic method for the simultaneous determination of lidocaine and its N-dealkylated metabolites in plasma. Ibid. 162, 466–73.

    Article  CAS  PubMed  Google Scholar 

  • Nayak, P. K., Misra, A. Z., and Mulé, S. J. (1976). Physiological disposition and biotransformation of 3H-cocaine in acutely and chronically treated rats. J. Pharmac. Exper. Ther. 196, 556–69.

    CAS  Google Scholar 

  • Nelson, S. D., Garland, W. A., Breck, G. D., and Trager, W. F. (1977). Quantification of lidocaine and several metabolites utilizing chemical-ionization mass spectrometry and stable isotope labeling. J. Pharm. Sci. 66, 1180–90.

    Article  CAS  PubMed  Google Scholar 

  • O’Brien, J. E., Abbey, V., Hinsvark, O., Perel, J., and Finster, M. (1979). Metabolism and measurement of chloroprocaine, an ester-type local anesthetic. Ibid. 68, 75–8.

    Article  PubMed  Google Scholar 

  • Pape, B. E. (1981). Antibody selectivity of a quantitative immunochemical assay for serum lidocaine. Clin. Chem. 27, 2032–4.

    CAS  PubMed  Google Scholar 

  • Pape, B. E., Whiting, R., Parker, K. M., and Mitra, R. (1978). Enzyme immunoassay and gas-liquid chromatography compared for determination of lidocaine in serum. Ibid. 24, 2020–2.

    CAS  PubMed  Google Scholar 

  • Park, G. B., Erdtmansky, P. E., Brown, R. R., Kullberg, M. P., and Edelson, J. (1980). Analysis of mepivacaine, bupivacaine, etidocaine, lidocaine and tetracaine. J. Pharm. Sci. 69, 603–5.

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer, H. J., Greenblatt, D. J., and Koch-Weser, J. (1976). Clinical use and toxicity of intravenous lidocaine. A report from the Boston Collaborative Drug Surveillance Program. Amer. Heart. J. 92, 168–73.

    Article  CAS  PubMed  Google Scholar 

  • Pratt, E. L., Warrington, H. L., and Greco, J. (1967). The gas chromatographic determination of mepivacaine in blood with a note on other local anesthetics. Anesthesiology 28, 432–7.

    Article  CAS  PubMed  Google Scholar 

  • Rauckman, E. J., Rosen, G. M., and Cavagnaro, J. (1982). Norcocaine nitroxide. A potential hepatotoxic metabolite of cocaine. Mol. Pharmac. 21, 458–63.

    CAS  Google Scholar 

  • Reynolds, F. (1971). Metabolism and excretion of bupivacaine in man. A comparison with mepivacaine. Br. J. Anaesth. 43, 33–37.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds, F., and Beckett, A. H. (1968). The determination of bupivacaine, lignocaine and mepivacaine in human blood. J. Pharm. Pharmac. 20, 704–8.

    Article  CAS  Google Scholar 

  • Rosseel, M. T., and Bogaert, M. G. (1978). Determination of lidocaine and its desethylated metabolites in plasma by capillary column gas-liquid chromatography. J. Chromatogr. 154, 99–102.

    Article  CAS  PubMed  Google Scholar 

  • Rowland, M., Thomson, P. D., Guichard, A., and Melmon, K. L. (1971). Disposition kinetics of lidocaine in normal subjects. Ann. New York Acad. Sci. 179, 383–98.

    Article  CAS  Google Scholar 

  • Seifen, A. B., Ferrari, A. A., Seifen, E. E., Thompson, D. S., and Chapman, J. (1979). Pharmacokinetics of intravenous procaine infusion in humans. Anesth. Analg. 58, 382–6.

    Article  CAS  PubMed  Google Scholar 

  • Smith, R. H., Brewster, M. A., MacDonald, J. A., and Thompson, D. S. (1978). Measurement of chloroprocaine and procaine in plasma by flame ionization gas-liquid chromatography. Clin. Chem. 24, 1599–1602.

    CAS  PubMed  Google Scholar 

  • Spechtmeyer, H., and Steinbach, H. (1969). Gaschromatographische bestimmung einiger lokalanasthetica und ihrer alkylamino-metabolite in biologischem material. Arzneim. Forsch 19, 1754–6.

    CAS  Google Scholar 

  • Stargel, W. W., Roe, C. R., Routledge, P. A., and Shand, D. G. (1979). Importance of blood-collection tubes in plasma lidocaine determinations. Clin. Chem. 25, 617–9.

    CAS  PubMed  Google Scholar 

  • Stewart, D. J., Inaba, T., Lucassen, M., and Kalow, W. (1979). Cocaine metabolism: Cocaine and norcocaine hydrolysis by liver and serum esterases. Clin. Pharmac. Ther. 25, 464–8.

    Article  CAS  Google Scholar 

  • Stewart, D. J., Inaba, T., Tang, B. K., and Kalow, W. (1977). Hydrolysis of cocaine in human plasma by cholinesterase. Life. Sci. 20, 1557–64.

    Article  CAS  PubMed  Google Scholar 

  • Strong, J. M., and Atkinson, A. J. (1972). Simultaneous measurement of plasma concentrations of lidocaine and its desethylated metabolite by mass fragmentography. Analyt. Chem. 44, 2287–90.

    Article  CAS  Google Scholar 

  • Strong, J. M., Mayfield, D. E., Atkinson, A. J., Burris, B. C., Raymon, F., and Webster, L. T. (1975). Pharmacological activity, metabolism and pharmacokinetics of glycinexylidide. Clin. Pharmac. Ther. 17, 184–94.

    Article  CAS  Google Scholar 

  • Sung, C. Y., and Truant, A. P. (1954). The physiological disposition of lidocaine and its comparison in some respects with procaine. J. Pharmac. Exper. Ther. 112, 432–43.

    CAS  Google Scholar 

  • Svinhufved, G., Ortengren, B., and Jacobsson, S. E. (1965). The estimation of lidocaine and prilocaine in biological material by gas chromatography. Scand. J. Clin. Lab. Invest. 17, 162–4.

    Article  Google Scholar 

  • Thomas, J., and Meffin, P. (1972). Aromatic hydroxylation of lidocaine and mepivacaine in rats and humans. J. Med. Chem. 15, 1046–9.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, J., Climie, C. R., and Mather, L. E. (1968). Placental transfer of lignocaine following lumbar epidural administration. Br. J. Anaesth. 40, 965–71.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, J., Climie, C. R., and Mather, L. E. (1969). The maternal plasma levels and placental transfer of bupivacaine following epidural analgesia. Ibid. 41, 1035–40.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, J., Morgan, D., and Vine, J. (1976). Metabolism of etidocaine in man. Xenobiotica 6, 39–48.

    Article  CAS  PubMed  Google Scholar 

  • Tobin, T., Tai, C. Y., and Arnett, S. (1975). Recovery of procaine from biological fluids. Res. Commun. Chem. Path. Pharmac. 11, 187–94.

    CAS  Google Scholar 

  • Tucker, G. T. (1970). Determination of bupivacaine (Marcaine) and other anilide-type local anesthetics in human blood and plasma by gas chromatography. Anesthesiology, 32, 255–60.

    Article  CAS  PubMed  Google Scholar 

  • Tucker, G. T. (1975). Biotransformation and toxicity of local anaesthetics. Acta Anaesth. Belg. 26 (suppl.), 123–40.

    Google Scholar 

  • Tucker, G. T. (1983a). Chemistry and pharmacology of local anaesthetic drugs. In Henderson, J. J., and Nimmo, W. S. (eds), Practical Regional Anaesthesia. Blackwell, Oxford.

    Google Scholar 

  • Tucker, G. T. (1983b). Pharmacokinetics of local anaesthetic drugs. Ibid.

    Google Scholar 

  • Tucker, G. T., and Mather, L. E. (1979). Clinical pharmacokinetics of local anaesthetics. Clin. Pharmacokin. 4, 241–78.

    Article  CAS  Google Scholar 

  • Valentour, J. C., Aggarwal, V., McGee, M. P., and Goza, S. W. (1978). Cocaine and benzoylecgonine determinations in postmortem samples by gas chromatography. J. Analyt. Toxicol. 2, 134–7.

    Article  CAS  Google Scholar 

  • Van Dyke, C., Barash, P. G., Jatlow, P., and Byck, R. (1976). Cocaine: Plasma concentrations after intranasal application in man. Science 191, 859–61.

    Article  CAS  PubMed  Google Scholar 

  • Verheesen, P. E., Brombacher, P. J., Cremers, H. M. H. G., and De Boer, R. (1980). Determination of low levels of bupivacaine (Marcaine) in plasma during epidural analgesia. J. Clin. Chem. Clin. Biochem. 18, 351–3.

    CAS  PubMed  Google Scholar 

  • Vigouroux, M., Montay, G., Benoit, N., Duckert, L., Roquet, F., and Reynier, M. (1978). Methode de dosage dans le sang de la lidocaine (Xylocaine) et de l’etidocaine (Duranest) par chromatographie en phase gazeuse. Anesth. Analg. Rean. 35, 1045–50.

    CAS  Google Scholar 

  • Vine, J., Morgan, D., and Thomas, J. (1978). The identification of eight hydroxylated metabolites of etidocaine by chemical ionization mass spectrometry. Xenobiotica 8, 509–13.

    Article  CAS  PubMed  Google Scholar 

  • Von Minden, D. L., and d’Amato, N. A. (1977). Simultaneous determination of cocaine and benzoylecgonine in urine by gas-liquid chromatography. Analyt. Chem. 49. 1974–7.

    Article  Google Scholar 

  • Walberg, C. B. (1978). Lidocaine by enzyme immunoassay. J. Analyt. Toxicol. 2, 121–3.

    Article  CAS  Google Scholar 

  • Wallace, J. E., Hamilton, H. E., Schwertner, H., King, D. E., McNay, J. L., and Blum, K. (1975). Thin-layer chromatographic determination of cocaine and benzoylecgonine in urine. J. Chromatogr. 114, 433–41.

    Article  CAS  PubMed  Google Scholar 

  • Wallace, J. E., Hamilton, H. E., King, D. E., Bason, D. J., Schwertner, H. A., and Harris, S. C. (1976). Gas-liquid chromatographic determination of cocaine and benzoylecgonine in urine. Analyt. Chem. 48, 34–8.

    Article  CAS  Google Scholar 

  • Wilkinson, G. R., and Lund, P. C. (1970). Bupivacaine levels in plasma and cerebrospinal fluid following peridural administration. Anesthesiology 33, 482–6.

    Article  CAS  PubMed  Google Scholar 

  • Wisnicki, J. L., Tong, W. P., and Ludlum, D. B. (1979). Analysis of lidocaine and its dealkylated metabolites by high-pressure liquid chromatography. Clin. Chim. Acta 93, 279–82.

    Article  CAS  PubMed  Google Scholar 

  • Woods, L. A., Cochin, J., Fomefeld, E. J., McMahon, F. G., and Seevers, M. H. (1951). The estimation of amines in biological materials with critical data for cocaine and mescaline. J. Pharmac. Exper. Ther. 101, 188–99.

    CAS  Google Scholar 

  • Zylber-Katz, E., Granit, L., and Leby, M. (1978). Gas-liquid chromatographic determination of bupivacaine and lidocaine in plasma. Clin. Chem. 24, 1573–5.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

A. S. Curry

Copyright information

© 1984 The contributors

About this chapter

Cite this chapter

Tucker, G.T., Lennard, M.S. (1984). Analysis of local anaesthetics. In: Curry, A.S. (eds) Analytical Methods in Human Toxicology. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-06715-2_7

Download citation

Publish with us

Policies and ethics