Skip to main content

Tricyclic antidepressants and neuroleptics

  • Chapter

Abstract

Although the compounds discussed in this chapter may be grouped in different classes according to their pharmacological properties, similarities in their structures and chemistry make it convenient to consider them together. Compounds given the generic name ‘tricyclic antidepressants’ are thought to exert their major effects by blocking the neuronal uptake of central-nervous-system transmitters—principally, noradrenaline and 5-hydroxytryptamine (serotonin). Neuroleptic phenothiazines and thioxanthenes have marked anti-dopaminergic properties but other phenothiazines may be used for their anti-histaminic (H1-receptor block) or anti-cholinergic properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfredsson, G., Wode-Helgodt, B., and Sedvall, G. (1976). A mass fragmentographic method for the determination of chlorpromazine and two of its active metabolites in human plasma and CSF. Psychopharmacology 48, 123–31.

    Article  CAS  PubMed  Google Scholar 

  • Bannister, S. J., Van der Wal, S., Dolan, J. W., and Snyder, L. R. (1981). Liquid chromatographic analysis for common tricyclic antidepressant drugs and their metabolites in serum or plasma with the Technicon ‘FAST-LC’ system. Clin. Chem. 27, 849–55.

    CAS  PubMed  Google Scholar 

  • Beckett, A. H., Essien, E. E., and Smyth, W. F. (1974). A polarographic method for the determination of the N-oxide, N-oxide-sulphoxide and sulphoxide metabolites of chiorpromazine. J. Pharm. Pharmac. 26, 399–407.

    Article  CAS  Google Scholar 

  • Bickel, M. H., and Weder, H. J. (1969). Buccal absorption and other properties of pharmacokinetic importance of imipramine and its metabolites. Ibid. 21, 160–8.

    Article  CAS  Google Scholar 

  • Biggs, J. T., Holland, W. H., Chang, S., Hipps, P. P., and Sherman, W. R. (1976). Electron beam ionization mass fragmentographic analysis of antidepressants in human plasma. J. Pharm. Sci. 65, 261–8.

    Article  CAS  PubMed  Google Scholar 

  • Borga, O., Palmer, L., Linnarsson, A., and Holmstedt, B. (1971). Quantitative determination of nortriptyline and desmethylnortriptyline in human plasma by combined gaschromatography-mass-spectrometry. Analyt. Lett. 4, 837–49.

    Article  CAS  Google Scholar 

  • Borga, O., Piafsky, K. M., and Nilsen, O. G. (1977). Plasma protein binding of basic drugs. 1: Selective displacement from alpha1-acid glycoprotein by tris(2-butoxyethyl)phosphate. Clin. Pharmacol. Ther. 22, 539–44.

    Article  CAS  PubMed  Google Scholar 

  • Braithwaite, R. A., and Widdop, B. (1971). A specific gas-chromatographic method for the measurement of ‘steady-state’ plasmalevels of amitriptyline and nortriptyline in patients. Clin. Chim. Acta. 35, 461–72.

    Article  CAS  PubMed  Google Scholar 

  • Breutzmann, D. A., and Bowers, L. D. (1981). Reversed-phase liquid chromatography and gas chromatography/mass fragmentography compared for determination of tricyclic antidepressant drugs. Clin. Chem. 27, 1907–11.

    CAS  PubMed  Google Scholar 

  • Breyer, U., and Schmalzing, G. (1977). A thin-layer chromatographic method for the measurement of trifluoperazine and its metabolites in rat tissues. Drug Metab. Dispos. 5, 97–115.

    CAS  PubMed  Google Scholar 

  • Brunswick, D. J., Needelman, B., and Mendels, J. (1978). Radioimmunoassay of imipramine and desipramine. Life Sci. 22, 137–46.

    Article  CAS  PubMed  Google Scholar 

  • Brunswick, D. J., Needelman, B., and Mendels, J. (1979). Specific radioimmunoassay of amitriptyline and nortriptyline. Br. J. Clin. Pharmacol. 7, 343–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatten, L. G., and Harris, L. E. (1962). Relationship between pKb (H2O) of organic compounds and E½ values in several non aqueous solvents. Analyt. Chem. 34, 1495–1501.

    Article  CAS  Google Scholar 

  • Cornis, G., Godbillon, J., and Metayer, (1976). Determination of clomipramine in plasma or urine by the double-radioisotope derivative technique. Clin. Chem. 22, 817–23.

    Google Scholar 

  • Crammer, J. L., and Rolfe, B. (1970). Metabolism of 14C-imipramine. 3: Conversions by rat tissues. Psychopharmacologia 12, 263–77.

    Article  Google Scholar 

  • Crammer, J. L., Woods, H., and Roffe, B. (1968). Metabolism of 14C-imipramine. 1: Excretion in the rat and in man. ibid. 12, 263–77.

    Article  CAS  PubMed  Google Scholar 

  • Crammer, J. L., Scott, B., and Rolfe, B. (1969). Metabolism of 14C-imipramine, 2: Urinary metabolites in man. Ibid. 15, 207–25.

    CAS  PubMed  Google Scholar 

  • Creese, I., and Snyder, S. H. (1977). A simple and sensitive radioreceptor assay for antischizophrenic drugs in blood. Nature, Lond. 270, 180–2.

    Article  CAS  Google Scholar 

  • Curry, S. H. (1968). Determination of nanogram quantities of chlorpromazine and some of its metabolites in plasma using gas-liquid chromatography with an electron-capture detector. Analyt. Chem. 40, 1251–5.

    Article  CAS  Google Scholar 

  • Curry, S. H. (1974). In Forrest, I., Carr, C. J., and Usdin, E. (eds), Phenothiazines and Structurally Related Drugs, Raven, New York.

    Google Scholar 

  • Curry, S. H., and Brown, E. A. (1981). HPLC assay of phenothiazine, thioxanthene and butyrophenone neuroleptics and antihistamines in plasma. 3: Quantitative aspects and clinical data. IRCS Med. Sci. 9, 170–1.

    CAS  Google Scholar 

  • Curry, S. H., and Evans, S. (1976). A note on the assay of chlorpromazine N-oxide and its sulphoxide in plasma and urine. J. Pharm. Pharmac. 28, 467–8.

    Article  CAS  Google Scholar 

  • Curry, S. H., and Mould, G. P. (1969). Gas chromatographic identification of thioridazine in plasma.Ibid. 21, 674–7.

    Article  CAS  Google Scholar 

  • Curry, S. H., Whelpton, R., de Schepper, P. J., Vranckx, S., and Schiff, A. A. (1979). Kinetics of fluphenazine after fluphenazine dihydrochloride, enanthate and decanoate administration to man. Brit. J. Clin. Pharmac. 7, 325–31.

    Article  CAS  Google Scholar 

  • Dekirmenjian, H., Jarvaid, J. I., Duslak, B., and Davis, J. M. (1978). Determination of antipsychotic drugs by gas-liquid chromatography with a nitrogen detector using a simple acetylation technique. J. Chromatogr. 160, 291–6.

    Article  CAS  PubMed  Google Scholar 

  • Driscoll, J. L., Martin, H. F., and Gudzinowicz, B. J. (1964). A gas chromatographic method for the quantitative analysis of some urinary metabolites of chlorpromazine. J. Gas Chromatogr. 2, 109.

    Article  CAS  Google Scholar 

  • Edeibroek, P. M., de Haas, E. J. M., and de Wolff, F. A. (1982). Liquid-chromatographic determination of amitriptyline and its metabolites in serum, with adsorption onto glass minimized. Clin. Chem. 28, 2143–8.

    Google Scholar 

  • Efron, D. H., Harris, S. R., Manian, A. A., and Gaudette, L. E. (1971). Radioassay of chlorpromazine and its metabolites in plasma. Psychopharmacologia 19. 207–10.

    Article  CAS  PubMed  Google Scholar 

  • Faber, D. B., Mulder, C., and Man In’t Veld, W. A. (1974). A thin-layer method for the determination of amitriptyline and nortriptyline in plasma. J. Chromatogr. 100. 55–61.

    Article  CAS  PubMed  Google Scholar 

  • Fishman, V., and Goldenberg, H. (1960). Metabolism of chlorpromazine organic-extractable fraction from human urine. Proc. Soc. Exp. Biol. Med. 104, 99–103.

    Article  CAS  PubMed  Google Scholar 

  • Fishman, V., and Goldenberg, H. (1963). Metabolism of CPZ. 4: Identification of 7-OHCPZ and its sulphoxide and demethyl derivatives. Ibid. 112, 501–6.

    Article  CAS  PubMed  Google Scholar 

  • Fishman, V., and Goldenberg, H. (1965). Side-chain degradation and ring hydroxylation of phenothiazine tranquillizers. J. Pharm. Exp. Therap. 150. 122–8.

    CAS  Google Scholar 

  • Fishman, V., Heaton, A., and Goldenberg, H. (1962). Metabolism of CPZ. 3: Isolation and identification of chlorpromazine-N-oxide. Proc. Soc. Exp. Biol. Med 109 548–52.

    Article  CAS  PubMed  Google Scholar 

  • Franklin, M., Wiles, D. H., and Harvey, D. J. (1978). Sensitive gas chromatographic determination for fluphenazine in human plasma. Clin. Chem. 24, 41–4.

    CAS  PubMed  Google Scholar 

  • Gaertner, H. J., and Breyer, U. (1972). In vivo piperazine ring degradation in neuroleptic and antihistaminic drugs. Arzhein-Forsch 22, 1084–5.

    CAS  Google Scholar 

  • Gifford, L. A., Turner, P., and Pare, C. M. B. (1975). Sensitive method for the routine determination of tricyclic antidepressants in plasma using a specific nitrogen detector. J. Chromatogr. 105, 107–13.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein, S. A., and Vunakis, H. V. (1981). Determination of fluphenazine, related phenothiazine drugs and metabolites by combined high-performance liquid chromatography and radioimmunoassay. J. Pharm. Exp. Therap. 217, 36–43.

    CAS  Google Scholar 

  • Gram, L. F., and Overø, K. F. (1972). Drug interactions: inhibitory effect of neuroleptics on metabolism of tricyclic antidepressants in man. Br. Med. J. i, 463–5.

    Article  Google Scholar 

  • Green, A. L. (1967). Ionization constants and water solubilities of some phenothiazine tranquillizers and related compounds. J. Pharm. Pharmac. 19, 10–16.

    Article  CAS  Google Scholar 

  • Gupta, R. N., and Molnar, G. (1980). Plasma levels and tricyclic antidepressant therapy. 1. A review of assay methods. Biopharm. Drug. Disp. 1, 259–77.

    Article  CAS  Google Scholar 

  • Gupta, S. K., Robertson, S., Wellstead, C., and Skrinska, V. A. (1982). High pressure liquid chromatographic method for tricyclic antidepressants: Comparison with GC/MS. Clin. Chem. 28, 1646.

    Google Scholar 

  • Hammer, W. M., and Brodie, B. B. (1967). Application of isotope derivative technique to assay of secondary amines: Estimation of desipramine by acetylation with 3H-acetic anhydride. J. Pharmac. Exp. Ther. 157, 503–8.

    CAS  Google Scholar 

  • Hammer, C. G., Holmstedt, B., and Ryhage, R. (1968). Mass fragmentography. Identification of chlorpromazine and its metabolites in human blood by a new method. Analyt. Biochem. 25, 532–48.

    Article  Google Scholar 

  • Hansen, C. E., and Larsen, N. E. (1974). Perphenazine concentration in human whole blood. Psychopharmac. 37, 31–6.

    Article  CAS  Google Scholar 

  • Hansen, L. B., and Larsen, N. E. (1977). Plasma concentrations of perphenazine and its sulphoxide metabolite during continuous oral treatment. Ibid. 53, 127–30.

    Article  CAS  Google Scholar 

  • Harris, S. R., Gaudette, L. E., Efron, D. H., and Manian, A. A. (1970). A method for the measurement of plasma imipramine and desmethylimipramine concentrations. life Sci. 9, 781–8.

    Article  CAS  Google Scholar 

  • Hartvig, P., and Naslund, B. (1977). Simultaneous determination of plasma amitriptyline and nortriptyline as trichloroethyl carbamates by electron-capture gas chromatography. J. Chromatogr. 133, 367–71.

    Article  CAS  PubMed  Google Scholar 

  • Heyes, W. F., and Salmon, J. R. (1978). Some aspects of the high-performance liquid chromatography of fluphenazine and its esters. Ibid. 156, 309–16.

    Article  CAS  Google Scholar 

  • Heyes, W. F., Salmon, J. R., and Marlow, W. (1980). High performance liquid chromatographic separation of the N- and S-oxides of fluphenazine and fluphenazine decanoate. Ibid. 194, 416–20.

    Article  CAS  Google Scholar 

  • Jarvaid, J. I., Dekirmenjian, H., Liskevych, V., Lin, R. L., and Davis, J. M. (1981). Fluphenazine determination in human plasma by a sensitive gas chromatographic method using nitrogen detector. J. Chromatogr. Sci. 19, 439–43.

    Article  Google Scholar 

  • Johansson, R., Borg, K. O., and Gabrielsson, M. (1976). Determination of fluphenazine in plasma by ion-pair partition chromatography. Acta Pharma. Suecica 13, 193–200.

    CAS  Google Scholar 

  • Jørgenson, A. (1978). A sensitive and specific radioimmunoassay for cis(Z)-flupenthixol in human serum. Life Sci. 23, 1533–42.

    Article  Google Scholar 

  • Kaul, P. N., Conway, M. W., Clark, M., and Huffine, J. (1970). Chlorpromazine metabolism. 1: Quantitative fluorometric method for 11 chlorpromazine metabolites. J. Pharm. Sci. 59, 1745–9.

    Article  CAS  PubMed  Google Scholar 

  • Kaul, P. N., Whitfield, L. R., and Clark, M. L. (1978). Quantitative determination of amitriptyline in blood. Ibid. 67, 60–2.

    Article  CAS  PubMed  Google Scholar 

  • Kawashima, K., Dixon, R., and Spector, S. (1975). Development of radioimmunoassay for chlorpromazine. Eur. J. Pharmac. 32, 195–202.

    Article  CAS  Google Scholar 

  • Knox, J. H., and Jurand, J. (1975). Separation of tricyclic psychosedative drugs by high-speed ion-pair partition and liquid-solid adsorption chromatography. J. Chromatogr. 103, 311–26.

    Article  CAS  Google Scholar 

  • Kresse, M., Schley, J., and Miller-Oblinghausen, B. (1980). Reliable routine method for determination of perazine in serum by thin-layer chromatography with an internal standard. Ibid. 183, 475–82.

    Article  CAS  PubMed  Google Scholar 

  • Larsen, N. E., and Marinelli, K. (1978). Determination of zimeldine and its demethylated metabolite in human plasma by gas-chromatography. Ibid. 156, 335–9.

    Article  CAS  PubMed  Google Scholar 

  • Larsen, N. E., and Naestoft, J. (1973). Determination of perphenazine and fluphenazine in whole blood by gas-chromatography. Med. Lab. Tech. 30, 129–32.

    CAS  Google Scholar 

  • Lehr, R. E., and Kaul, P. N. (1975). Chlorpromazine metabolism. 4: Quaternization as a key to determination of picomoles of chlorpromazine and other tertiary amine drugs. J. Pharm. Sci. 64, 950–3.

    Article  CAS  PubMed  Google Scholar 

  • Lehrer, M., and Cannon, P. (1982). Rapid quantification of tricyclic antidepressant drugs by HPLC. Clin. Chem. 28, 1646.

    Google Scholar 

  • Li Wan Po, A., and Irwin, W. J. (1979). A high performance liquid chromatographic assay of cis- and trans-isomers of tricyclic neuroleptic drugs. J. Pharm. Pharmac. 31, 512–16.

    Article  CAS  Google Scholar 

  • McCutcheon, J. R. (1979). Reverse-phase HPLC determination of thioridazine and mesoridazine in whole blood. J. Analyt. Toxicol. 3, 105–7.

    Article  CAS  Google Scholar 

  • Maguire, K. P., Burrows, G. D., Norman, J. R., and Scoggins, B. A. (1980). Blood/plasma distribution ratios of psychotropic drugs. Clin. Chem. 26, 1624–5.

    CAS  PubMed  Google Scholar 

  • Mehta, A. C. (1981). High-performance liquid chromatographic determination of chlorpromazine and thioridazine hydrochlorides in pharmaceutical formulations. Analyst 106, 1119–22.

    Article  CAS  PubMed  Google Scholar 

  • Midha, K. K., Cooper, J.K., and Hubbard, J. W. (1980). Radioimmunoassay for fluphenazine in human plasma. Commun. Psychopharmac. 4, 107–14.

    CAS  Google Scholar 

  • Midha, K. K., Cooper, J. K., McGilveray, I. J., Butterfield, A. G., and Hubbard, J. W. (1981a). High-performance liquid chromatographic assay for nanogram determination of chlorpromazine and its comparison with a radioimmunoassay. J. Pharm. Sci. 70, 1043–6.

    Article  CAS  PubMed  Google Scholar 

  • Midha, K. K., Hubbard, J. W., Cooper, J. K., Hawes, E. M., Fournier, S., and Yeung, P. (1981b). Radioimmunoassay for trifluoperazine in human plasma. Br. J. Clin. Pharmac. 12, 189–93.

    Article  CAS  Google Scholar 

  • Midha, K. K., MacKonka, C., Cooper, J. K., Hubbard, J. W., and Yeung, P. K. F. (1981c) Radioimmunoassay for perphenazine in human plasma. Ibid. 1, 85–8.

    Article  Google Scholar 

  • Midha, K. K., Roscoe, R. M. H., Hall, K., Hawes, E. M., Cooper, J. K., McKay, G., and Shetty, H. V. (1982). A gas-chromatographic mass spectrometric assay for plasma trifluoperazine concentrations following single doses. Biomed. Mass Spectr. 9, 186–90.

    Article  CAS  Google Scholar 

  • Muusze, R. G. (1975). Analysis of thioridazine and some of its metabolites in blood by liquid chromatography. PhD thesis, Amsterdam.

    Google Scholar 

  • Muusze, R. G., and Huber, J. F. K. (1974). Determination of the psychotropic drug thioridazine and its metabolites in blood by means of high pressure liquid chromatography in combination with fluorometric reaction detection. J. Chrom. Sci. 12, 779–87.

    Article  CAS  Google Scholar 

  • Nagy, A., and Treiber, L. (1973). Quantitative determination of imipramine and desipramine in human blood plasma by direct densitometry of thin-layer chromatograms. J. Pharm. Pharmacol. 25, 599–603.

    Article  CAS  PubMed  Google Scholar 

  • Ng, C. H., and Crammer, J. L. (1977). Measurement of thioridazine in blood and urine. Br. J. Clin. Pharmacol. 4, 173–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nyberg, G., and Martensson, E. (1977). Quantitative analysis of tricyclic antidepressants in serum from psychiatric patients. J. Chromatogr. 143, 491–7.

    Article  CAS  PubMed  Google Scholar 

  • Overø, K. F. (1972). Increased specificity of the 3H-acetic anhydride coupling method for plasma analysis of drugs containing secondary amino groups. Acta Pharmacol. Toxicol. 31, 433–40.

    Article  Google Scholar 

  • Patel, R. B., and Welling, R. G. (1981). On column reduction of promethazine metabolite during gas-chromatography. Clin. Chem. 27, 1780–1.

    CAS  PubMed  Google Scholar 

  • Preskorn, S. H., Leonard, K., and Hignite, C. (1980). Liquid chromatography of amitriptyline and related tricyclic compounds. J. Chromatogr. 197, 246–50.

    Article  CAS  PubMed  Google Scholar 

  • Riess, W. (1974). The double radio-isotope derivative technique for the assay of drugs in biological material. 1: The measurement of maprotiline. Analyt. Chim. Acta 68, 363–76.

    Article  CAS  Google Scholar 

  • Risk, C. A., and Hall, R. C. (1977). Evaluation of the Hall electrolytic conductivity detector for the analysis of narcotic alkaloid and phenothiazine drugs extracted from urine. J. Chrom. Sci. 15, 156–9.

    Article  CAS  Google Scholar 

  • Robinson, J. D., and Risby, D. (1977). Radioimmunoassay for flupenthixol in plasma. Clin. Chem. 23, 2085–88.

    CAS  PubMed  Google Scholar 

  • Rosseel, M. T., Bogaert, M. G., and Claeys, M. (1978). Quantitative GLC determination of cis- and trans-isomers of doxepin and desmethyldoxepin. J. Pharm. Sci. 65, 802–5.

    Article  Google Scholar 

  • Scoggins, B. A., Maguire, K. P., Noirman, T. R., and Burrows, G. D. (1980). Measurements of tricyclic antidepressants. Clin. Chem. 26, 5–17.

    CAS  PubMed  Google Scholar 

  • Shah, V. P., Knapp, G., Skelly, J. P., and Cabana, B. E. (1982). Interference with measurements of certain drugs by a plasticiser in vacutainer tubes. Ibid. 28, 2327–8.

    CAS  PubMed  Google Scholar 

  • Skinner, T., Gochnauer, R., and Linnoila, M. (1981). Liquid chromatographic method to measure thioridazine and its active metabolites in plasma. Acta. Pharmacol. Toxicol. 48, 223–6.

    Article  CAS  Google Scholar 

  • Spector, S., Spector, N. L., and Almeida, M. P. (1975). Radioimmunoassay for desmethylimipramine. Psychopharmac. Comm. 1, 421–9.

    CAS  Google Scholar 

  • Spirtes, M. A. (1974). Two types of metabolically produced trifluoperazine N-oxides. In Forest, I. S., Carr, C. J., Denber, H. C. B., and Usdin, E. (eds). Phenothiazines and Structurally Related Drugs. Raven, New York.

    Google Scholar 

  • Tjaden, U. R., Lankelma, J., Poppe, H., and Muusze, R. G. (1976). Anodic coulometric detection with a glassy carbon electrode in combination with reversed-phase high-performance liquid chromatography. J. Chromatogr. 125, 275–86.

    Article  CAS  PubMed  Google Scholar 

  • Volin, P. (1981). Therapeutic monitoring of tricyclic antidepressant drugs in plasma or serum by GC. Clin. Chem. 27, 1785–7.

    CAS  PubMed  Google Scholar 

  • Wallace, J. E., Shimck, E. L., Harris, S. C., and Stavchansky, S. (1981a). Determination of promethazine in serum by liquid chromatography. Ibid. 27, 253–5.

    CAS  PubMed  Google Scholar 

  • Wallace, J. E., Schimck, E. L., Stavchansky, S., and Harris, S. C. (1981b). Determination of promethazine and other phenothiazine compounds by liquid chromatography with electrochemical detection. Analyt. Chem. 53, 960–2.

    Article  CAS  Google Scholar 

  • Wheals, B. B. (1979). Simple preparation of a bonded cation-exchange packing material and its application of the separation of phenothiazines by high-performance liquid chromatography. J. Chromatogr. 177, 263–70.

    Article  CAS  PubMed  Google Scholar 

  • Whelpton, R. (1978). Lipophilicity as a factor in the biochemical pharmacology of tranquillizing drugs. PhD thesis, London.

    Google Scholar 

  • Whelpton, R., and Curry, S. H. (1975). Gas-chromatography separation of chlorpromazine, diazepam and N-desmethydiazepam. J. Pharm. Pharmac. 27, 970–1.

    Article  CAS  Google Scholar 

  • Whelpton, R., and Curry, S. H. (1976a). Chromatographic properties of imines formed from delinethylchlorpromazine and various aldehydes and ketones. J. Chromatgr. 121, 88–92.

    Article  CAS  Google Scholar 

  • Whelpton, R., and Curry, S. H. (1976b). Methods for the study of fluphenazine kinetics in man. J. Pharm. Pharmac. 28, 869–73.

    Article  CAS  Google Scholar 

  • Whelpton, R., Curry, S. H., and Watkins, G. M. (1982). Analysis of plasma trifluoperazine by gas chromatography and selected ion monitoring. J. Chromatogr. 228, 321–6.

    Article  CAS  PubMed  Google Scholar 

  • Wiles, D. J., and Franklin, M. (1978). Radioimmunoassay for fluphenazine in human plasma. Brit. J. Clin. Pharmac. 5, 265–8.

    Article  CAS  Google Scholar 

  • Zehnder, K., Kalberer, F., Kreis, W., and Rutschmann, J. (1962). The metabolism of thioridazine and one of its pyrrolidine analogues in the rat. Biochemical Pharmacol. 11, 535–50.

    Article  CAS  Google Scholar 

  • Zingales, I. (1967). Systematic identification of psychotropic drugs by thin-layer chromatography, 1. J. Chromatogr. 31, 405–19.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

A. S. Curry

Copyright information

© 1984 The contributors

About this chapter

Cite this chapter

Whelpton, R. (1984). Tricyclic antidepressants and neuroleptics. In: Curry, A.S. (eds) Analytical Methods in Human Toxicology. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-06715-2_6

Download citation

Publish with us

Policies and ethics