Skip to main content

Neurochemical effects of the atypical antidepressant diclofensine in the rat

  • Chapter
Frontiers in Neuropsychiatric Research
  • 106 Accesses

Abstract

Controlled clinical trials have established the antidepressant activity of the isoquinoline derivatives, diclofensine (Ro 8–4650)2 (De Paula and Omer, 1980; Cherpillod and Omer, 1981; Heinze and Omer, 1981; Omer, 1982) and nomifensine3 (Acébal et al., 1976; Goldstein et al., 1982). However, in spite of their similar chemical structure, these two drugs affect the monoaminergic systems in the brain by different mechanisms. Results from experimental animal studies show that nomifensine does not only inhibit the neuronal uptake of dopamine (DA) and norepinephrine (NE) but, similar to amphetamine, also has marked monoamine releasing properties. In contrast, diclofensine appears to be the first antidepressant to inhibit, in vitro and in vivo, the neuronal uptake of all three neurotransmitters, DA, NE and 5-hydroxytryptamine (5-HT) to a similar extent. Diclofensine, which seems to be the most effective DA uptake inhibitor known so far, is essentially devoid of monoamine-releasing properties (Keller et al., 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acébal, E., Subirá, S., Spatz, J., Faleni, R., Merzbacher, B., Gales, A. and Moizeszowicz, J. (1976). A double blind comparative trial of nomifensine and desimipramine in depression. Europ. J. Clin. Pharmacol., 10:109–113

    Google Scholar 

  • Baumann, P.A. and Maître, L. (1976). Is drug inhibition of dopamine uptake a misinterpretation of in vitro experiments? Nature, 264:789–790

    Article  CAS  Google Scholar 

  • Bonetti, E.P. and Bondiolotti, G. (1980). Backward locomotion in rats, a specific stereotyped behavior. Experientia, 36:705

    Google Scholar 

  • Breese, G.R., Mueller, R.A. and Mailman, R.B. (1979). Effect of dopaminergic agonists and antagonists on in vivo cyclic nucleotide content: relation of guanosine 3′,5′-monophosphate (cGMP) changes in cerebellum to behaviour. J. Pharmacol. Exp. Ther., 209:262–270

    Google Scholar 

  • Burkard, W.P., Pieri, L. and Haefely, W. (1976). In vivo changes of guanosine 3′,5′-cyclic phosphate in rat cerebellum by dopaminergic mechanisms. J. Neurochem., 27:297–298

    Google Scholar 

  • Carruba, M.O., Burkard, W.P. and Da Prada, M. (1980). Behavioral and biochemical effects of moxifensine, nomifensine and amphetamine: similarities and differences. Experientia, 36: 705

    Google Scholar 

  • Cherpillod, C. and Omer, L.M.O. (1981). Controlled trial with diclofensine, a new psychoactive drug in the treatment of depression. J. Int. Med. Res., 9:324–329

    Google Scholar 

  • Choma, P.P., Puri, S.K. and Volicer, L. (1979). Circadian rhythm of cyclic nucleotide and GABA levels in the rat brain. Pharmacology, 19:307–314

    Article  PubMed  CAS  Google Scholar 

  • Corda, M.G., Biggio, G. and Gessa, G.L. (1980). Brain nucleotides in naive and handling-habituated rats: differences in levels and drug-sensitivity. Brain Research, 188:287–290

    Article  PubMed  CAS  Google Scholar 

  • Costall, B and Naylor, R.A. (1978). Studies on the dopamine agonist properties of 8-amino-2-methyl-4-(3,4-dihydroxyphenyl)-1,2,3,4-tetrahydroisoquinoline, a derivative of nomifensine. J. Pharm. Pharmac., 30:514–516

    Google Scholar 

  • DePaula, A.J.M. and Omer, L.M.O. (1980). Diclofensine (Ro 8–4650), a new psychoactive drug: its efficacy and safety in non-psychotic depression under double-blind placebo-controlled conditions. Current Therapeutic Research, 28:837–844

    Google Scholar 

  • Dinnendahl, V. and Gumulka, S.W. (1977). Stress-induced alterations of cyclic nucleotide levels in brain: effects of centrally acting drugs. Psychopharmacology, 52:243–249

    Article  PubMed  CAS  Google Scholar 

  • - Gerhards, H.A., Carenzi, A. and Costa, E. (1974). Effects of nomifensine on motoractivity, dopamine turnover rate and cyclic 3′,5′-adenosine monophosphate concentrations of rat striatum. Naunyn-Schmiedeberg’s Arch. Pharmacol., 286:49–63

    Google Scholar 

  • Goldstein, S.E., Birnbom, F. and Laliberte, R. (1982). Nomifensine in the treatment of depressed geriatric patients. J. Clin. Psychiatry, 43:287–289

    Google Scholar 

  • Guidotti, A., Cheney, D.L., Trabucchi, M., Doteuchi, M., Wang, C. and Hawkins, R.A. (1974). Focussed microwave radiation: a

    Google Scholar 

  • technique to minimize post mortem changes of cyclic nucleotide, dopa and choline and to preserve brain morphology. Neuropharmacol., 13:1115–1122

    Google Scholar 

  • Gumulka, S.W., Dinnendahl, V., Peters, H.D. and Schoenhoefer, P.S. (1976). Effects of dopaminergic stimulants on cyclic nucleotide levels in mouse brain in vivo. Naunyn-Schmiedeberg’s Arch. Pharmacol., 293:75–80

    Google Scholar 

  • Heinze, G. and Omer, L.M.O. (1981). Placebo-controlled trial of diclofensine (Ro 8–4650) in the symptomatic treatment of depressive illness. Current Therapeutic Research, 29: 567–574

    Google Scholar 

  • Kant, G.J., Meyerhoff, J.L. and Lenox, R. (1980). In vivo effects of apomorphine and 4-(3-butoxy-4-methoxy benzyl)2-imidazolidone (Ro 20–1724) on cyclic nucleotides in rat brain and pituitary. Biochem. Pharmacol., 29:369–373

    Google Scholar 

  • Kant, G.J., Sessions, R.G., Lenox, R.H. and Meyerhoff, J.L. (1981). The effects of hormonal and circadian cycles, stress and activity on levels of cyclic AMP and cyclic GMP in pituitary, hypothalamus, pineal and cerebellum of male rats. Life Sciences, 29:2491–2499

    Article  PubMed  CAS  Google Scholar 

  • Keller, H.H., Schaffner, R., Càrruba, M.O., Burkard, W.P., Pieri, M., Bonetti, E.P., Scherschlicht, R., Da Prada, M. and Haefely, W. (1982). Diclofensine (Ro 8–4650) — a potent inhibitor of monoamine uptake: biochemical and behavioural effects in comparison with nomifensine. In E. Costa and G. Racagni, (eds.), Typical and Atypical Antidepressants, Raven Press, New York; Adv. Biochem. Psychopharm., 31:249–263

    Google Scholar 

  • Kruse, H., Hoffmann, I., Gerhards, H.J., Leven, M. and Schacht, U. (1977). Pharmacological and biochemical studies with three metabolites of nomifensine. Psychopharmacology, 51:117–123

    Article  PubMed  CAS  Google Scholar 

  • Kuhar, M.J., Roth, M.H. and Aghajanian, G.K. (1972). Synaptosomes from forebrains of rats with midbrain raphe lesions: selective reduction. J. Pharm. Exp. Ther., 181:36–45

    Google Scholar 

  • McKillop, D. and Bradford, H.F. (1981). Comparative effects of benztropine and nomifensine on dopamine uptake and release from striatal synaptosomes. Biochem. Pharmacol., 30: 2753–2758

    Google Scholar 

  • Meyerhoff, J.L., Lenox, R.H., Kant, G.J., Sessions, G.R., Mougey, E.H. and Pennington, L.L. (1979). The effect of locomotor activity on cerebellar levels of cGMP. Life Sciences, 24: 1125–1130

    Article  PubMed  CAS  Google Scholar 

  • Möhler, H., Burkard, W.P., Keller, H.H., Richards, J.G. and Haefely, W. (1981). Benzodiazepine antagonist Ro 15–1788: binding characteristics and interactions with drug-induced changes in dopamine turnover and cerebellar cGMP levels. J. Neurochem., 37:714–722

    Google Scholar 

  • Omer, L.M.O. (1982). Pilot trials with diclofensine, a new psychoactive drug in depressed patients. Int. J. Clin. Pharmac, Ther. Toxicol., 20:320–326

    Google Scholar 

  • Poat, J.A., Woodruff, G.N. and Watling, K.J. (1978). Direct effect of a nomifensine derivative on dopamine receptors. J. Pharm. Pharmac., 30:495–497

    Google Scholar 

  • Puri, S.K., Choma, P. and Volicer, L. (1978). Cyclic nucleotide levels in the rat striatum and cerebellum — in vivo effects of dopamine and acetylcholine receptor agonists and antagonists. Biochem. Pharmacol., 27:2333–2336

    Google Scholar 

  • Volicer, L., Puri, S.K. and Choma, P. (1977). Cyclic GMP and GABA levels in rat striatum and cerebellum during morphine withdrawal: effect of apomorphine. Neuropharmacol., 16:791–794

    Article  CAS  Google Scholar 

  • Zumstein, A., Karduck, W. and Starke, K. (1981). Pathways of dopamine metabolism in the rabbit caudate nucleus in vitro. Naunyn-Schmiedeberg’s Arch. Pharmacol., 316:205–217

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1983 The contributors

About this chapter

Cite this chapter

Burkard, W.P., Keller, H.H., Da Prada, M., Haefely, W. (1983). Neurochemical effects of the atypical antidepressant diclofensine in the rat. In: Usdin, E., Goldstein, M., Friedhoff, A., Georgotas, A. (eds) Frontiers in Neuropsychiatric Research. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-06689-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-06689-6_8

  • Publisher Name: Palgrave Macmillan, London

  • Print ISBN: 978-1-349-06691-9

  • Online ISBN: 978-1-349-06689-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics