Receptor—receptor interactions: possible new mechanisms for the action of some antidepressant drugs

  • L F Agnati
  • K Fuxe
  • F Benfenati
  • L Calza
  • N Battistini
  • S-O Ögren

Abstract

New methodologies have been introduced to analyze synaptic transmission, such as methods for the quantitation of the entity of coexistence of transmitters and for a morphometric quantitation of receptor autoradiograms. Evidence has been presented for the existence of receptor-receptor interactions in monoamine synapses as shown by the ability of, for example, substance P(SP), to modulate the binding characteristics of 5-HT receptors in the spinal cord. It has also been shown that SP added in vitro can reverse the effects of chronic imipramine treatment on the 5-HT receptors of the spinal cord. Thus, to understand the mechanism of action of antidepressants, it becomes necessary to understand the influence of this treatment on the 5-HT comodulator mechanisms, which represent important integrative mechanisms in 5-HT synapses. For the first time, the 3H-imipramine binding sites have also been demonstrated: receptor autoradiography showing high density of grains in, for example, the hypothalamus, ventral hippocampus and the lateral geniculate body.

Keywords

Dopamine Serotonin Progesterone Monoamine Clonidine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnati, L.F., Fuxe, K., Andersson, K., Hökfelt, T., Skirboll, L., Benfenati, F., Battistini, N. and Calza, L. (1982a). Possible functional meaning of the coexistence of monoamines and peptides in the same neurons. A study on the interactions between cholecystokinin-8 and dopamine in the brain. In G. V. Corsini (ed.), Proceedings of the 2nd Neuroscience Meeting in Capoboj, Pergamon Press, New York, (in press)Google Scholar
  2. Agnati, L.F., Fuxe, K., Calza, L., Hökfelt, T., Johansson, O., Benfenati, F. and Goldstein, M. (1982b). A morphometrical analysis of transmitter-identified dendrites and nerve terminal. Brain Res. Bull., 9:53660Google Scholar
  3. Agnati, L.F. Fuxe, K., Locatelli, V., Benfenati, F., Panerai, A. E., El Etreby, M.F., Hökfelt, T. and Zini, I. (1982c). Neuroanatomical methods for the quantitative evaluation of coexistence of transmitters in nerve cell. Analysis of the ACTH and β-endorphin immunoreactive nerve cell bodies of the mediobasal hypothalamus of the rat. J. Neurosci. Meth., 5:203–214CrossRefGoogle Scholar
  4. Agnati, L.F., Fuxe, K., Zoli, M., Rondanini, C., Ogren, S.-O. (1982d). New vistas on synaptic plasticity: the receptor mosaic hypothesis of the engram. Med. Biol., 60:183–190Google Scholar
  5. Agnati, L.F., Fuxe, K., Kuonen, D., Blake, C.A., Andersson, K., Eneroth, P., Gustafsson, J.-Å., Battistini, N. and Calza, L. (1981). Effects of estrogen and progesterone on central α-and β-adrenergic receptors in ovariectomized rats. Evidence for gonadal steroid receptor regulation of brain α- and β-adrenergic receptors. In K. Fuxe, L. Wetterberg and J.-Å. Gustafsson (eds.), Steroid Hormone Regulation of the Brain, Pergamon Press, Oxford, pp. 237–252CrossRefGoogle Scholar
  6. Agnati, L.F., Fuxe, K., Zini, I., Lenzi, P. and Hökfelt, T. (1980). Aspects on receptor regulation and isoreceptor identification. Med. Bio.., 58:1982–1987Google Scholar
  7. Bennett, J.P. and Snyder, S.H. (1976). Serotonin and lysergic acid diethylamide binding in rat brain membranes: relationship to postsynaptic receptor. Molec. Pharmacol., 12:373–389Google Scholar
  8. Creese, I., Schneider, R. and Snyder, S.H. (1977). 3H-spiroperidol labels dopamine receptors in pituitary and brain. Eur. J. Pharmacol., 46:377–381Google Scholar
  9. Fuxe, K., Agnati, L.F., Benfenati, F., Cimmino, M., Algeri, S., Hökfelt, T. and Mutt, V. (1981). Modulation of cholecystokinins of 3H-spiroperidol binding in rat striatum: Evidence for increased affinity and reduction in the number of binding sites. Acta Physiol. Scand., 113:567–569Google Scholar
  10. Fuxe, K., Agnati, L.F., Benfenati, F., Andersson, K., Calza, L., Tatemoto, K., Hökfelt, T., Mutt, V. and Battistini, N. (1982a). On the functional role of neuropeptides in various types of central monoamine pathways. Abstract: Fourth International Symposium on Gastrointestinal Hormones, Stockholm, Sweden, 20–23 June.Google Scholar
  11. Fuxe, K., Agnati, L.F., Härfstrand, A., Lundberg, J., Hökfelt, T., Calza, L., Kimmel, J. and Bernardi, P. (1982b). Intracisternal administration of avian pancreatic polypeptide lowers respiration rate and enhances the clonidine induced reduction of respiration rate in α-chloralose anaesthetized rats: possible interactions with an α2-adrenergic receptor. Acta Physiol. Scand., 115:381–384Google Scholar
  12. Fuxe, K., Agnati, L.F., Hökfelt, T., Calza, L., Benfenati, F., Mascagni, F. and Goldstein, M. (1982c). Immunocytochemistry of central neurons. Manuscript for the WHO study group on Neuroplasticity and Repair in the Central Nervous System, Raven Press, New York, (in press)Google Scholar
  13. Fuxe, K., Ögren, S.-O., Agnati, L.F., Andersson, K. and Eneroth, P. (1982d). Effects of subchronic antidepressant drug treatment on central serotonergic mechanisms in the male rat. In E. Costa and G. Racagni (eds.), Typical and Atypical Antidepressants, vol. 31, Raven Press, New York, pp. 91–108Google Scholar
  14. Fuxe, K., Ogren, S.-O., Agnati, L.F. and Calza, L. (1982e). Evidence for stabilization of cortical 5-HT neurotransmission by chronic treatment with antidepressants drugs: Induction of a high and a low affinity component in 3H-5-HT binding sites. Acta Physiol. Scand., 114:477–480Google Scholar
  15. Hökfelt, T., Fuxe, K. and Goldstein, M. (1975). Applications of immunohistochemistry to studies on monoamine cell systems with special reference to nervous tissue. Ann. N. Y. Acad. Sci., 254:407–432Google Scholar
  16. Hökfelt, T., Johansson, O., Ljungdahl, Å., Lundberg, J. and Schultzberg, M. (1980). Peptidergic neurons. Nature, 284:515–521PubMedCrossRefGoogle Scholar
  17. Hökfelt, T., Ljungdahl, Å., Steinbusch, H., Verhofstad, A., Nilsson, G., Brodin, F., Pernow, B. and Goldstein, M. (1978). Immunohistochemical evidence of substance P immunoreactivity in some 5-hydroxytryptamine containing neurons in the rat central nervous system. Neurosci., 3:517–538CrossRefGoogle Scholar
  18. Johansson, O., Hökfelt, T., Pernow, B., Jeffcoate, S.L., White, N., Steinbusch, H.W.B., Verhofstad, A.A.L., Emson, P.C. and Spindel, E. (1981). Immunohistochemical support for three putative transmitters on one neuron: coexistence of 5-hydroxytryptamine, substance-P- and thyrotropin releasing hormone-like immunoreactivity in medullary neurons projecting to the spinal cord. Neurosci., 6:1857–1881CrossRefGoogle Scholar
  19. Lundberg, J.M., Hedlund, B. and Bartfai, T. (1982). Vasoactive intestinal polypeptide enhances muscorhinic ligand binding in cat submandibular salivary gland. Nature, 295:147–149PubMedCrossRefGoogle Scholar
  20. McCulloch, W.S. and Pitts, T.H. (1943). A logical calculus of the ideas immanent in neural nets. Bull. Math. Biophys., 5:115–133Google Scholar
  21. Ögren, S.-O., Fuxe, K., Archer, T., Johansson, G. and Holm, A.C. (1982). Behavioural and biochemical studies on the effects of acute and chronic administration of antidepressant drugs on central serotonergic receptor mechanisms. In S. Langer, T. Takahashi, T. Segawa and M. Briley (eds.), New Vistas in Depression, Pergamon Press, 40:11–19Google Scholar
  22. Peroutka, S.J. and Snyder, S.H. (1980). Regulation of serotonin 5-HT-2 receptors labelled with 3H-spiroperidol by chronic treatment with the antidepressant amitriptyline. J. Pharmacol. Exp. Therapeutics, 215:582–587Google Scholar
  23. Ponzio, F. and Jonsson, G. (1979). A rapid and simple method for the determination of picogram levels of serotonin in brain tissue using liquid chromatography with electrochemical detection. J. Neurochem., 32:129–132Google Scholar
  24. Raisman, R., Briley, M. and Langer, S.Z. (1979). High-affinity 3H-imipramine binding in rat cerebral cortex. Eur. J. Pharmacol., 54:307–308Google Scholar
  25. Rosser, J.B. and Turguette, A.R. (1952). Many-valued Logics, North Holland, AmsterdamGoogle Scholar
  26. Tatemoto, K., Carlquist, M. and Mutt, V. (1982). Discovery and isolation of neuropeptide Y (NPY), a brain peptide that has structural similarities to intestinal PYY and the pancreatic polypeptide. Nature, (in press)Google Scholar

Copyright information

© The contributors 1983

Authors and Affiliations

  • L F Agnati
    • 1
  • K Fuxe
    • 2
  • F Benfenati
    • 1
  • L Calza
    • 1
  • N Battistini
    • 1
  • S-O Ögren
    • 2
  1. 1.Department of Human Physiology and EndocrinologyUniversity of ModenaModenaItaly
  2. 2.Department of Histology, Karolinska InstitutetStockholm, Sweden and Astra Research LaboratoriesSödertäljeSweden

Personalised recommendations