Skip to main content

Relationships between receptor affinities of different antidepressants and their clinical profiles

  • Chapter
Clinical Pharmacology in Psychiatry

Abstract

The mechanism of action of antidepressant drugs is not well understood. The classical tricyclic antidepressant drugs as well as some newer antidepressants have been developed as inhibitors of the presynaptical re-uptake of the neurotransmitters norepinephrine (NE) (Glowinski and Axelrod, 1964; Iversen, 1965; Carlsson et al., 1966) and 5-hydroxytryptamine (5-HT) (Carlsson et al., 1969; Ross and Renyi, 1969). It has been hypothesized that the therapeutic action of the antidepressant drugs is due to an increased availability of NE and 5-HT at postsynaptic receptors in the brain as the result of the re-uptake blockade (Schildkraut, 1965; Coppen, 1967; van Praag, 1974). However, in recent years some antidepressants (e.g. mianserin and iprindole) have been developed which lack effect or have only very slight effect on the uptake mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banerjee, S. P., Kung, L.S., Riggi, S.J., and Chanda, S.K. (1977). Development of β-adrenergic receptor subsensitivity by antidepressants. Nature, 268, 455–6

    Article  CAS  PubMed  Google Scholar 

  • Baumann, P.A. and Maître, L. (1977). Blockade of presynaptic α-receptors and of amine uptake in the rat brain by the antidepressant mianserine. Naunyn-Schmiedeb. Arch. Pharmacol., 300, 31–7

    Article  CAS  Google Scholar 

  • Burgess, C.D. (1981). Effects of antidepressants on cardiac function. Acta Psychiat. Scand., 63, Suppl. 290, 370–9

    Article  Google Scholar 

  • Burt, D.R., Creese, I. and Snyder, S.H. (1976). Properties of [3H]-haloperidol and [3H]dopamine binding associated with dopamine receptors in calf brain membranes. Mol. Pharmacol., 12, 800–12

    CAS  PubMed  Google Scholar 

  • Carlsson, A., Corrodi, H., Fuxe, K. and Hökfelt, T. (1969). Effect of antidepressant drugs on the depletion of intraneuronal brain 5-hydroxytryptamine stores caused by 4-methyl-α-ethyl-meta-tyramine. Eur. J. Pharmacol., 5, 357–66

    Article  CAS  PubMed  Google Scholar 

  • Carlsson, A., Fuxe, K., Hamberger, B. and Lindqvist, M. (1966). Biochemical and histochemical studies on the effects of imipramine-like drugs and (+)-amphetamine on central and peripheral catecholamine neurons. Acta Physiol. Scand., 67, 481–97

    Article  CAS  PubMed  Google Scholar 

  • Coppen, A. (1967). The biochemistry of affective disorders. Br. J. Psychiatry., 113, 1237–64

    Article  CAS  PubMed  Google Scholar 

  • Fuxe, K., Ogren, S.O. and Agnati, L.F. (1979). The effects of chronic treatment with the 5-hydroxytryptamine uptake blocker zimelidine on central 5-hydroxytryptamine mechanisms. Evidence for the induction of a low affinity binding site for 5-hydroxytryptamine. Neurosci. Lett., 13, 307–12

    Article  CAS  PubMed  Google Scholar 

  • Fuxe, K., Ogren, S.O., Agnati, L.F., Andersson, K. and Eneroth, P. (1982). Effects of subchronic antidepressant drug treatment on central serotonergic mechanisms in the male rat. In Typical and Atypical Antidepressants. Molecular Mechanisms (ed. E.Costa and G. Racagni). (Advances in Biochemical Psychopharmacology, Vol. 31) pp. 91–107

    Google Scholar 

  • Glowinski, J. and Axelrod, J. (1964). Inhibition of uptake of tritiated noradrenaline in the intact rat brain by imipramine and structurally related compounds. Nature, 204, 1318–19

    Article  CAS  PubMed  Google Scholar 

  • Gravenstein, J.S., Ariet, M. and Thornby, J.I. (1969). Atropine on the electrocardiogram. Clin. Pharmacol. Ther., 10, 660–6

    CAS  PubMed  Google Scholar 

  • Hall, H. and Ogren, S.O. (1981). Effects of antidepressant drugs on different receptors in the brain. Eur. J. Pharmacol., 70, 393–407

    Article  CAS  PubMed  Google Scholar 

  • Hall, H., Ross, S.B. and Ogren, S.O. (1982a). Effects of zimelidine on various transmitter systems in the brain. In Typical and Atypical Antidepressants. Molecular Mechanisms. (ed. E. Costa and G. Racagni). (Advances in Biochemical Psychopharmacolocy. Vol. 31) pp 321–5

    Google Scholar 

  • Hall, H., Ross, S., Ogren, S.O. and Gawell, L. (1982b). Binding of a specific 5-HT uptake inhibitor, 3H-norzimelidine, to rat brain homogenates. Eur. J. Pharmacol., 80, 281–2

    Article  CAS  PubMed  Google Scholar 

  • Hall, H., Ross, S.B. and Sällemark, M. (1983). Effect of destruction of central noradrenergic and serotonergic nerve terminals by systemic neurotoxins on the longterm effects of antidepressants on β-adrenoceptors and 5-HT2 in the binding sites rat cerebral cortex. To be published

    Google Scholar 

  • Harper, B. and Hughes, I.E. (1979). Presynaptic α-adrenoceptor blocking properties among tri- and tetra-cyclic antidepressant drugs. Br. J. Pharmacol., 67, 511–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heisenbuttel, R. H. and Bigger, J.T. (1970). The effect of quinidine on intraventricular conduction in man. Correlation of plasma quinidine with changes in QRS duration. Am. Heart J., 80, 453–62

    Article  Google Scholar 

  • Innes, J.R. and Nickerson, M. (1975). Norepinephrine, epinephrine and the sympathomimetic amines. In Pharmacological Basis of Therapeutics (ed. L.S. Goodman and A. Gilman). Macmillan, London, pp. 491–2

    Google Scholar 

  • Iversen, L. (1965). Inhibition of noradrenaline uptake by drugs. J. Pharm. Pharmacol., 17, 62–4

    Article  CAS  PubMed  Google Scholar 

  • James, T.N., Isobe, J.H. and Urthaler, F. (1975). Analysis of components in a cardiogenic hypertensive reflex. Circulation, 52, 179–92

    Article  CAS  PubMed  Google Scholar 

  • Kanof, P. D. and Greengard, P. (1978). Brain histamine receptors as targets for antidepressant drugs. Nature, 272, 329–33

    Article  CAS  PubMed  Google Scholar 

  • Langer, S. Z. and Briley, M. (1981). High affinity imipramine binding: a new biological tool for studies in depression. Trends Neurosci., 2, 28–31

    Article  Google Scholar 

  • Langer, S.Z., Raisman, R. and Briley, M. (1981). High affinity (3H)-DMI binding is associated with neuronal noradrenaline uptake in the periphery and the central nervous system. Eur. J. Pharmacol., 72, 423–4

    Article  CAS  PubMed  Google Scholar 

  • Lee, C.-M. and Snyder, S.H. (1981). Norepinephrine neuronal uptake binding sites in rat brain membranes labelled with (3H)-desipramine. Proc. Natl. Acad. Sci., 78, 5250–4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leonard, B.E. (1974). Some effects of a new tetracyclic antidepressant compound Org GB 94 on the metabolism of monoamines in the rat brain. Psychopharmacologia, 36, 221–36

    Article  CAS  PubMed  Google Scholar 

  • Lindbom, L.-O. and Forsberg, T. (1981). Cardiovascular effects of zimelidine and other antidepressants in conscious rats. Acta Psychiat. Scand., 63, Suppl. 290, 380–4

    Article  Google Scholar 

  • Nickerson, M. and Hollenberg, N.K. (1967). Blockade of alpha adrenergic receptors. In Physiological Pharmacology, vol. 4, The Nervous System (ed. W.S. Root and F.G. Hofmann), Academic Press, New York, Part D, autonomic nervous system drugs, pp. 243–305

    Google Scholar 

  • Ögren, S.O., Cott, J.M. and Hall, H. (1981). Sedative/anxiolytic effects of antidepressants in animals. Acta Psychiat. Scand., 63, Suppl. 290, 277–88

    Article  Google Scholar 

  • Ögren, S.O., Fuxe, K., Agnati, L.F., Gustafsson, J. A., Jonsson, G. and Holm, A.C. (1979). Reevaluation of the indoleamine hypothesis of depression. Evidence for a reduction of functional activity of central 5-HT systems by antidepressant drugs J. Neural Transm., 46, 85–103

    Article  PubMed  Google Scholar 

  • Ögren, S.O. and Hall, H. (1983). Peripheral and central anticholinergic properties of the 5-HT uptake inhibitors zimelidine and alaproclate. To be published

    Google Scholar 

  • Peroutka, S.J. and Snyder, S.H. (1980). Regulation of serotonin2 (5-HT2) receptors labelled with (3H)-spiroperidol by chronic treatment with the antidepressant amitriptyline. J. Pharmacol. Exp. Ther., 215, 582–7

    CAS  PubMed  Google Scholar 

  • Peroutka, S.J., U’Prichard, D.C., Greenberg, D.A. and Snyder, S.H. (1977). Neuroleptic drug interactions with norepinephrine α-receptor binding sites in rat brain. Neuropharmacology, 16, 549–56

    Article  CAS  PubMed  Google Scholar 

  • Rafaelsen, O.J., Clemmesen, L., Lund, H., Mikkelsen, P.L. and Bolwig, T.G. (1981). Comparison of peripheral anticholinergic effects of antidepressants: dry mouth. Acta Psychiat. Scand., 63, Suppl 290, 364–9

    Article  Google Scholar 

  • Raisman, R., Briley, M. and Langer, S.Z. (1979a). High-affinity [3H]imipramine binding in rat cerebral cortex. Eur. J. Pharmacol., 54, 307–8

    Article  CAS  PubMed  Google Scholar 

  • Raisman, R., Briley, M. and Langer, S.Z. (1979b). Specific tricyclic antidepressant binding site in rat brain. Nature, 281, 148–50

    Article  CAS  PubMed  Google Scholar 

  • Raisman, R., Briley, M.S. and Langer, S.Z. (1980). Specific tricyclic antidepressant binding sites in rat brain characterized by high-affinity 3H-imipramine binding. Eur. J. Pharmacol., 61, 373–80

    Article  CAS  PubMed  Google Scholar 

  • Reisine, T. (1981). Adaptive changes in catecholamine receptors in the central nervous system. Neuroscience, 61, 1471–502

    Article  Google Scholar 

  • Reisine, T., Johanson, R., Weich, N., Ursillo, R. and Yamamura, H. (1982). Rapid desensitization of central beta-receptors and upregulation of alpha2 receptors following antidepressant treatment. In Typical and Atypical Antidepressants. Molecular Mechanisms. (ed. E. Costa and G. Racagni). (Advances in Biochemical Psychopharmacology, Vol. 31) pp. 63–7

    Google Scholar 

  • Ross, S. B. and Renyi, A.L. (1969). Inhibition of the uptake of tritiated 5-hydroxytryptamine in brain tissue. Eur. J. Pharmacol., 7, 270–7

    Article  CAS  PubMed  Google Scholar 

  • Ross, S.B. and Renyi, A.L. (1975). Tricyclic antidepressant agents. I. Comparison of the inhibition of the uptake of [3H]noradrenaline and [14C]5-hydroxytryptamine in slices and crude synaptosome preparations of the midbrain-hypothalamus region of the rat brain. Acta. Pharmacol. Toxicol., 36, 382–94

    Article  CAS  Google Scholar 

  • Schildkraut, J.J. (1965). The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am. J. Psychiatry, 122, 413–18

    Article  Google Scholar 

  • Smith, C.B., Garcia-Sevilla, J.A. and Hollingsworth, P.J. (1981). Adrenoceptors in rat brain are decreased after long-term tricyclic antidepressant drug treatment. Brain Res., 210, 413–18

    Article  CAS  PubMed  Google Scholar 

  • Snyder, S.H. and Yamamura, H.I. (1977). Antidepressants and the muscarinic acetylcholine receptor. Arch. Gen. Psychiatry, 34, 236–9

    Article  CAS  PubMed  Google Scholar 

  • Sulser, F. (1982). Antidepressant drug research, its impact on neurobiology and psychobiology. In Typical and Atypical Antidepressants. Molecular Mechanisms. (ed. E. Costa and G. Racagni). (Advances in Biochemical Psychopharmacology, vol. 31) pp 1–20

    Google Scholar 

  • U’Prichard, D.C., Greenberg, D.A., Sheehan, P.P. and Snyder, S.H. (1978). Tricyclic antidepressants: therapeutic properties and affinity of α-noradrenergic receptor binding sites in the brain. Science, 199, 197–8

    Article  PubMed  Google Scholar 

  • Van Praag, H.M. (1974). Towards a biochemical topology of depression. Pharmacopsychiatry, 7, 281–92

    Article  Google Scholar 

  • Vetulani, J. (1982). Adaptive changes as the mode of action of antidepressant treatment. In Typical and Atypical Antidepressants. Molecular Mechanisms. (ed. E. Costa and G. Racagni) (Advances in Biochemical Psychopharmacology, vol. 31) pp 27–36

    Google Scholar 

  • Vetulani, J., Stawarz, R.J., Dingell, J.V. and Sulser, F. (1976). A possible common mechanism of action of antidepressant treatments. Arch. Pharmacol., 293, 109–14

    Article  CAS  Google Scholar 

  • Wolfe, B.B., Harden, T.K., Sporn, J.R. and Molinoff, P.B. (1978). Presynaptic modulation of beta adrenergic receptors in rat cerebral cortex after treatment with antidepressants. J. Pharmacol. Exp. Ther., 207, 446–57

    CAS  PubMed  Google Scholar 

  • Yamamura, H.I. and Snyder, S.H. (1974). Muscarinic cholinergic binding in rat brain, Proc. Natl. Acad. Sci. USA, 71, 1725–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1983 The contributors

About this chapter

Cite this chapter

Hall, H. (1983). Relationships between receptor affinities of different antidepressants and their clinical profiles. In: Gram, L.F., Usdin, E., Dahl, S.G., Kragh-Sørensen, P., Sjöqvist, F., Morselli, P.L. (eds) Clinical Pharmacology in Psychiatry. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-06671-1_23

Download citation

Publish with us

Policies and ethics