Skip to main content

The fate of amitriptyline and its metabolites, taking into account their binding in plasma

  • Chapter
Clinical Pharmacology in Psychiatry

Abstract

At the last meeting in this series, it became clear that the pharmacological activity of the hydroxylated metabolites ought to be considered in future clinical studies on antidepressants (Potter, 1981). Some of the genetic aspects of the metabolism of these antidepressants have been reviewed by Bertilsson et al. (1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexanderson, B. and Borgå, O. (1972). Interindividual differences in plasma protein binding of nortriptyline in man — a twin study. Eur. J. Clin. Pharmacol., 4, 196–200

    Article  Google Scholar 

  • Alvan, C., Borgå, O., Lind, M., Palmer, L. and Siwers, B. (1977). First pass hydroxylation of nortriptyline: concentrations of parent drug and major metabolites in plasma. Eur. J. Clin. Pharmacol., 11, 219–24

    Article  CAS  PubMed  Google Scholar 

  • Balant-Gorgia, A.E., Schulz, P., Dayer, P., Balant, L., Kubli, A., Gertsch, C. and Garrone, G. (1982). Role of oxidation polymorphism on blood and urine concentration of amitriptyline and its metabolites. Arch. Psychiat. Nervenkr., 232, 215–22

    Article  CAS  PubMed  Google Scholar 

  • Baumann, P., Tinguely, D., Koeb, L., Schöpf, J. and Le, P.K. (1982a). On the relationship between free plasma and saliva amitriptyline and nortriptyline. Int. Pharmacopsychiat., 17, 136–46

    CAS  Google Scholar 

  • Baumann, P., Tinguely, D. and Schöpf, J. (1982b). Increase of α1-acid-glycoprotein after treatment with amitriptyline. Br. J. Clin. Pharmacol., 14, 102–3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bertilsson, L., Alvan, G., von Bahr, C., Lind, M., Mellström, B., Säwe, J., Schulz, H.-U. and Sjöqvist, F. (1981). Active metabolites of antidepressants: novel aspects of hydroxylation and demethylation in man. In Clinical Pharmacology in Psychiatry; Neuroleptic and Antidepressant Research (ed. E. Usdin, S.G. Dahl, L.F. Gram and O. Lingjaerde), Macmillan, London, pp. 161–9

    Google Scholar 

  • Bertilsson, L., Eichelbaum, M., Mellström, B., Säwe, J., Schulz, H.-U. and Sjöqvist, F. (1980). Nortriptyline and antipyrine clearance in relation to debrisoquine hydroxylation in man. Life Sci., 27, 1673–7

    Article  CAS  PubMed  Google Scholar 

  • Bertilsson, L., Mellström, B. and Sjöqvist, F. (1979). Pronounced inhibition of noradrenaline uptake by 10-hydroxy-metabolites of nortriptyline. Life Sci., 25, 1285–91

    Article  CAS  PubMed  Google Scholar 

  • Borgå, O., Azarnoff, D.L., Forshell, G.P. and Sjöqvist, F. (1969). Plasma protein binding of tricyclic anti-depressants in man. Biochem. Pharmacol., 18, 2135–43

    Article  PubMed  Google Scholar 

  • Brinkschulte, M. and Breyer-Pfaff, U. (1980). The contribution of α1-acid glycoprotein, lipoproteins, and albumin to the plasma binding of perazine, amitriptyline, and nortriptyline in healthy man. Naunyn-Schmiedeberg’sArch. Pharmacol., 314, 61–6

    Article  CAS  Google Scholar 

  • Burch, J.E., Roberts, S.G., and Raddats, M.A. (1981). Binding of amitriptyline and nortriptyline in plasma determined from their equilibrium distributions between red cells and plasma, and between red cells and buffer solution. Psychopharmacology, 75, 262–72

    Article  CAS  PubMed  Google Scholar 

  • Carroll, B.J., Mukhopadhyay, S. and Feinberg, M. (1981). Radioimmunoassay of tricyclic antidepressants. In Clinical Pharmacology in Psychiatry; Neuroleptic and Antidepressant Research (ed. E. Usdin, S.G. Dahl, L.F. Gram and O. Lingjaerde), Macmillan, London, pp. 19–25.

    Google Scholar 

  • Danhof, M. and Breimer, D.D. (1978). Therapeutic drug monitoring in saliva. Clin. Pharmacokin., 3, 39–57

    Article  CAS  Google Scholar 

  • De Leve, L.D. and Piafsky, K.M. (1981). Clinical significance of plasma binding of basic drugs. Trends Pharmacol. Sci., 2, 283–4

    Article  Google Scholar 

  • Garland, W.A., Muccino, R.R., Min, B.H., Cupano, J. and Fann, W.E. (1979). A method for the determination of amitriptyline and its metabolites nortriptyline, 10-hydroxyamitriptyline, and 10-hydroxynortriptyline in human plasma using stable isotope dilution and gas chromatography-chemical ionization mass spectrometry (GC-CIMS). Clin. Pharmacol. Ther., 25, 844–56

    CAS  PubMed  Google Scholar 

  • Jeffrey, A.A. and Turner, P. (1978). Relationship between plasma and salivary concentrations of amitriptyline. Br. J. Clin. Pharmacol., 5, 268–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kragh-Sørensen, P. and Larsen, N.-E. (1980). Factors influencing nortriptyline steady-state kinetics: plasma and saliva levels. Clin. Pharmacol. Ther., 28, 796–803

    Article  PubMed  Google Scholar 

  • Maitre, L., Moser, P., Baumann, P.A. and Waldmeier, P.C. (1980). Amine uptake inhibitors: criteria of selectivity. Acta Psychiat. Scand., 61, Suppl. 280, 97–110

    CAS  Google Scholar 

  • Mellström, B., Bertilsson, L., Säwe, J., Schulz, H.-U. and Sjöqvist, F. (1981). E- and Z–10-hydroxylation of nortriptyline: relationship to polymorphic debrisoquine hydroxylation. Clin. Pharmacol. Ther., 30, 189–93

    Article  PubMed  Google Scholar 

  • Mucklow, J.C., Bending, M.R., Kahn, G.C. and Dollery, C.T. (1978). Drug concentration in saliva. Clin. Pharmacol. Ther., 24, 563–70

    CAS  PubMed  Google Scholar 

  • Piafsky, K.M. and Borgå, O. (1977). Plasma protein binding of basic drugs. II. Importance of α1-acid glycoprotein for interindividual variation. Clin. Pharmacol. Ther., 22, 545–9

    CAS  PubMed  Google Scholar 

  • Posti, J. (1982). Saliva-plasma drug concentration ratios during absorption: theoretical considerations and pharmacokinetic implications. Pharmaceut. Acta Helv., 57, 83–92

    CAS  Google Scholar 

  • Potter, W.Z. (1981). Active metabolites of tricyclic antidepressants. In Clinical Pharmacology in Psychiatry; Neuroleptic and Antidepressant Research (ed. E. Usdin, S.G. Dahl, L.F. Gram and O. Lingjaerde), Macmillan, London, pp. 139–53

    Google Scholar 

  • Routledge, P.A., Stargel, W.W., Finn, A.L., Barchowsky, A. and Shand, D.G. (1981). Lignocaine disposition in blood in epilepsy. Br. J. Clin. Pharmacol., 12, 663–6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tinguely, D., Baumann, P. and Schöpf, J. (1982). A microprocedure to determine polymorphic forms of acid-α1-glycoprotein in plasma. Application to depressive patients treated with amitriptyline. J. Chromatogr., 229, 319–25

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1983 The contributors

About this chapter

Cite this chapter

Baumann, P. et al. (1983). The fate of amitriptyline and its metabolites, taking into account their binding in plasma. In: Gram, L.F., Usdin, E., Dahl, S.G., Kragh-Sørensen, P., Sjöqvist, F., Morselli, P.L. (eds) Clinical Pharmacology in Psychiatry. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-06671-1_21

Download citation

Publish with us

Policies and ethics