Skip to main content

Stereospecific 10-hydroxylation of nortriptyline — genetic aspects and importance for biochemical and clinical effects

  • Chapter
Clinical Pharmacology in Psychiatry

Abstract

The plasma level of the tricyclic antidepressant nortriptyline is an important determinant for its clinical effects (cf. Sjöqvist et al., 1980). The therapeutic effect is related to the plasma level in a curvilinear manner, with poor outcome both at low and very high plasma concentrations (Asberg et al., 1971). There are two main reasons why nortriptyline has become one of the most thoroughly investigated antidepressants: (a) analytical methods were developed very early for measurement of low plasma levels of this secondary amine, and (b) it was initially thought that nortriptyline had no active metabolites (in contrast to the tertiary amines amitriptyline and imipramine). It was later shown that the major metabolite of nortriptyline, i.e. 10-hydroxy-nortriptyline, is almost as potent as the parent drug in inhibiting the uptake of norepinephrine (NE) in rat brain slices (Bertilsson et al., 1979). The E- and Z-10-OH-nortriptyline isomers (figure 1) were equipotent in this respect. It was also shown that the plasma levels of 10-OH-nortriptyline often exceeded those of the parent drug during nortriptyline treatment. Levels of 10-OH-nortriptyline and nortriptyline in CSF were comparable, showing that the hydroxy metabolites pass into the central nervous system (loc. cit).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aberg-Wistedt, A., Ross, S.B., Jostell, K.-G. and Sjöqvist, F. (1982). A double-blind study of zimelidine, a serotonin uptake inhibitor, and desipramine, a noradrenaline uptake inhibitor, in endogenous depression: II. Biochemical findings. Acta Psych. Scand., 66, 66–82

    Article  CAS  Google Scholar 

  • Alexanderson, B. (1972). Pharmacokinetics of desmethyl-imipramine and nortriptyline in man after single and multiple doses. A crossover study. Eur. J. Clin. Pharmacol., 5, 1–10

    Article  CAS  Google Scholar 

  • Alexanderson, B. and Borgå, O. (1973). Urinary excretion of nortriptyline and five of its metabolites in man after single and multiple oral doses. Eur. J. Clin. Pharmacol., 5, 174–180

    Article  CAS  Google Scholar 

  • Alexanderson, B., Price Evans, D. A. and Sjöqvist, F. (1969). Steady-state plasma levels of nortriptyline in twins. Influence of genetic factors and drug therapy. Br. Med. J., 2, 764–8

    Article  Google Scholar 

  • Asberg, M., Bertilsson, L., Tuck, D., Cronholm, B. and Sjöqvist, F. (1973). Indoleamine metabolites in the cerebrospinal fluid of depressed patients before and during treatment with nortriptyline. Clin. Pharmacol. Ther., 14, 277–86

    CAS  PubMed  Google Scholar 

  • Asberg, M., Cronholm, B., Sjöqvist, F. and Tuck, R. (1971). Relationship between plasma level of nortriptyline and therapeutic effect. Br. Med. J., 3, 331–4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Asberg, M., Montgomery, S., Perris, C., Schalling, D. and Sedvall, G. (1978). A comprehensive psychopathological rating scale. Acta Psychiat. Scand., Suppl. 271, 5–27

    Article  Google Scholar 

  • Asberg, M., Thorén, P., Träskman, L., Bertilsson, L. and Ringberger, V. (1976). Serotonin depression — a biochemical subgroup within the affective disorders? Science, 191, 478–80

    Article  CAS  PubMed  Google Scholar 

  • Bertilsson, L. (1981). Quantitative mass fragmentography — a valuable tool in clinical psychopharmacology. In Clinical Pharmacology in Psychiatry (ed. E. Usdin), Elsevier/NorthHolland, New York, pp. 59–71

    Google Scholar 

  • Bertilsson, L. and Aberg-Wistedt, A. (1983). The debrisoquine hydroxylation test predicts steady-state plasma levels of desipramine. Br. J. Clin. Pharmacol., 15, 388–90

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bertilsson, L., Asberg, M. and Thorén, P. (1974). Differential effects of chlorimipramine and nortriptyline on metabolites of serotonin and noradrenaline in the cerebrospinal fluid of depressed patients. Eur. J. Clin. Pharmacol., 7, 365–8

    Article  CAS  PubMed  Google Scholar 

  • Bertilsson, L., Eichelbaum, M., Mellström, B., Säwe, J., Schulz, H.-U. and Sjöqvist, F. (1980a). Nortriptyline and antipyrine clearance in relation to debrisoquine hydroxylation in man. Life Sci., 27, 1673–7

    Article  CAS  PubMed  Google Scholar 

  • Bertilsson, L., Mellström, B. and Sjöqvist, F. (1979). Pronounced inhibition of noradrenaline uptake by 10-hydroxymetabolites of nortriptyline. Life Sci., 25, 1285–92

    Article  CAS  PubMed  Google Scholar 

  • Bertilsson, L., Tuck, J.R. and Siwers, B. (1980b). Biochemical effects of zimelidine in man. Eur. J. Clin. Pharmacol., 18, 483–7

    Article  CAS  PubMed  Google Scholar 

  • Borgå, O., Palmér, L., Sjöqvist, F. and Holmstedt, B. (1972). Mass fragmentography used in quantitative analysis of drugs and endogenous compounds in biological fluids. In Proc. 5th Int. Congr. on Pharmacology, S. Karger AG, Basel, vol. III, pp. 56–68

    Google Scholar 

  • Eichelbaum, M., Bertilsson, L., Säwe, J. and Zekorn, C. (1982). Polymorphic oxidation of sparteine and debrisoquine: related pharmacogenetic entities. Clin. Pharmacol. Ther., 31, 184–6

    Article  CAS  PubMed  Google Scholar 

  • Eichelbaum, M., Spannbrucker, N., Steinecke, B. and Dengler, H.J. (1979). Defective N-oxidation of sparteine in man: a new pharmacogenetic defect. Eur. J. Clin. Pharmacol., 16, 183–7

    Article  CAS  PubMed  Google Scholar 

  • Mahgoub, A., Idle, J.R., Dring, L.G., Lancaster, R. and Smith, R.L. (1977). The polymorphic hydroxylation of debrisoquine in man. Lancet, ii, 584–6

    Article  Google Scholar 

  • Mellström, B., Bertilsson, L., Säwe, J., Schulz, H.-U. and Sjöqvist, F. (1981). E- and Z-10-hydroxylation of nortriptyline: relationship to polymorphic debrisoquine hydroxylation. Clin. Pharmacol. Ther., 30, 189–93

    Article  PubMed  Google Scholar 

  • Nordin, C., Siwers, B. and Bertilsson, L. (1982). Site of lumbar puncture influences levels of monoamine metabolites. Arch. Gen. Psychiatry, 39, 1445

    Article  CAS  PubMed  Google Scholar 

  • Sjöqvist, F., Bertilsson, L. and Asberg, M. (1980). Monitoring tricyclic antidepressants. Ther. Drug Monit., 2, 85–93

    Article  PubMed  Google Scholar 

  • Träskman, L., Asberg, M., Bertilsson, L., Cronholm, B., Mellström, B., Neckers, L.M., Sjöqvist, F., Thorén, P. and Tybring, G. (1979). Plasma levels of chlorimipramine and its demethyl metabolite during treatment of depression. Clin. Pharmacol. Ther., 26, 600–10

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1983 The contributors

About this chapter

Cite this chapter

Bertilsson, L., Mellström, B., Nordin, C., Siwers, B., Sjöqvist, F. (1983). Stereospecific 10-hydroxylation of nortriptyline — genetic aspects and importance for biochemical and clinical effects. In: Gram, L.F., Usdin, E., Dahl, S.G., Kragh-Sørensen, P., Sjöqvist, F., Morselli, P.L. (eds) Clinical Pharmacology in Psychiatry. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-06671-1_20

Download citation

Publish with us

Policies and ethics