Skip to main content
  • 28 Accesses

Abstract

Provided some moisture is available, and this need only be as much as will condense in dew from a cloud zone, there is scarcely any habitat in the world that is too hostile to support plant life. The variety of adaptation found in green plants has produced species with roots that live and extract nutrition from every possible substrate. With some species the roots may hang in air (figure 6.1) while in others they are to be found buried in every type of soil from pure sand and gravel to peat, or even—as with hydrophytes—totally submerged in water. The ecological enterprise of plants in obtaining their nutrients provides ample evidence of the truth of Spinoza’s maxim (even if a little out of context) that ‘Nature abhors a vacuum’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  • A. D. Bradshaw, M. J. Chadwick, D. Joyett and R. W. Snaydon, ‘Experimental Investigations into the mineral Nutrition of Several Grass Species; IV Nitrogen level’, J. Ecol., 52 (1964) pp. 665–76.

    Article  Google Scholar 

  • D. H. Kohl, G. B. Shearer and B. Commoner, ‘Fertilizer Nitrogen: Contribution to Nitrate in Surface Water in a Corn Belt Water Shed’, Science, 174 (1971) pp. 1331–4.

    Article  PubMed  CAS  Google Scholar 

  • K. D. White, Roman farming (Thames & Hudson, London, 1970).

    Google Scholar 

Nutrient Absorption

  • E. Epstein, Mineral Nutrition of Plants: Principles and Perspectives (Wiley, New York, 1972).

    Google Scholar 

  • J. L. Harley, Biology of Mycorrhiza (Leonard Hill, London, 1969).

    Google Scholar 

  • H. Lundegårdh, Plant Physiology (Elsevier, New York, 1966).

    Google Scholar 

  • J. S. Pate and B. E. S. Gunning, ‘Transfer cells’, A. Rev. Pl. Physiol., 23 (1972) pp. 173–96.

    Article  Google Scholar 

  • R. N. Robertson, Protons, Electrons, Phosphorylation and Active Transport (Cambridge University Press, 1968).

    Google Scholar 

Mineral Supply and Plant Growth

  • M. M. R. K. Afridi and E. J. Hewitt, ‘The Inducible Formation and Stability of Nitrate Reductase in Higher Plants’, J. exp. Bot., 16 (1965) pp. 628–45.

    Article  CAS  Google Scholar 

  • G. Bond, ‘Fixation of Nitrogen by Higher Plants other than Legumes’, A. Rev. Pl. Physiol., 18 (1967) pp. 107–26.

    Article  CAS  Google Scholar 

  • C. D. Pigott and K. Taylor, The Distribution of some Woodland Herbs in Relation to the Supply of Phosphorus and Nitrogen in the Soil’, J. Ecol., 52 (1964) pp. 175–85.

    Article  Google Scholar 

  • W. D. P. Stewart, ‘Algal Fixation of Atmospheric Nitrogen, Pl. Soil, 32 (1970) pp. 555–88.

    Article  CAS  Google Scholar 

Minerals with Adverse Effects on Plant Growth

  • A. D. Bradshaw, R. S. McNeilly and R. P. G. Gregory, ‘Industrialization, Evolution and the Development of Heavy Metal Tolerance in Plants’, Symp. Br. ecol. Soc., 5 (1965) pp. 327–43.

    Google Scholar 

  • D. T. Clarkson, ‘Calcium Uptake by Calcicole and Calcifuge Species in the Genus Agrostis L.’, J. Ecol., 54 (1965) pp. 167–78.

    Article  Google Scholar 

  • W. Ehrler, ‘Some Effects of Salinity on Rice’, Bot. Gaz., 122 (1960) pp. 102–4.

    Article  CAS  Google Scholar 

  • J. Levitt, Responses of Plants to Environmental Stresses (Academic Press, New York, 1972).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1976 Macmillan Publishers Limited

About this chapter

Cite this chapter

Crawford, R.M.M. (1976). Mineral Nutrition. In: Hall, M.A. (eds) Plant Structure, Function and Adaptation. Palgrave, London. https://doi.org/10.1007/978-1-349-06571-4_6

Download citation

Publish with us

Policies and ethics