Skip to main content

Targeting of drugs with liposomes

  • Chapter
Chemotherapeutic Strategy
  • 86 Accesses

Abstract

At least two options are open to us in pursuing optimal drug action (Gregoriadis, 1981a). In the first, creation of specialised molecules, a therapeutically profitable target-drug relationship is usually far from ideal and undesirable side effects are almost always present. In the second, drug molecules that are not necessarily target specific are transported by a carrier to the area of action and subsequently allowed to perform their task. Transport by the carrier should be effected in isolation from the biological space existing between the site of application and the site of action as this would be useful in cases where drugs are either prone to premature excretion and inactivation or detrimental to the non-target space in the host. The carrier itself should be non-toxic, biodegradable and of the appropriate shape and size so as to enable accommodation of a wide variety of therapeutic agents. It should preferably ignore or be ignored by irrelevant (normal) areas and have a pronounced affinity for, and access to the target site within which there should be a mechanism for the release of agents from the carrier. The latter, having accomplished its function, should then be disposed of.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alving, C.R., Steck, E.A., Chapman, Jr, W.L., Waits, V.B., Hendricks, L.D., Swartz, Jr., G.M.., Hanson, W.L. (1978). Therapy of leishmaniasis: superior efficacies of liposome encapsulated drugs. Proc. Nat. Acad. Sci. USA, 75, 2959–63.

    Google Scholar 

  • Black, C.D.V., Watson, C.J., Ward, R.J. (1977). The use of pentostam liposomes in the chemotherapy of experimental leishmaniasis. Trans. Roy. Soc. Trop. Med. Hyg. 71, 550–52.

    Google Scholar 

  • Chobanian, J.V., Tall, A.R., Brecher, P.I. (1979). Interaction between unilamellar egg yolk lecithin vesicles and human high density lipoproteins. Biochemistry, 18, 180–87.

    Google Scholar 

  • Dapergolas, G. and Gregoriadis, G. (1976) Hypoglycaemic effect of liposome-entrapped insulin administered intragastrically into rats. Lancet ii, 824–27.

    Google Scholar 

  • Fidler, I.J. (1980). Therapy of spontaneous metastases by intravenous injection of liposomes containing lymphokines. Science, 108, 1469–71.

    Google Scholar 

  • Gregoriadis, G., (1981). Liposomes: a role in vaccines?. Clin Immunol Newsl. 2, 33–36.

    Google Scholar 

  • Gregoriadis, G., Manesis, E.K. (1980). Liposomes as immunological adjuvants for hepatitis B surface antigens. In: Liposomes and immunobiology (eds. B.H. Tom and H.R. Six). Elsevier/North Holland, New York, Amsterdam.

    Google Scholar 

  • Gregoriadis, G. (1981a). Targeting of drugs: implications in medicine. The Lancet, 2, 241–247.

    Google Scholar 

  • Gregoriadis, G., Senior, J. and Trouet, A. (eds.) (1982a). Targeting of drugs. Plenum, New York.

    Google Scholar 

  • Gregoriadis, G. and Senior, J. (1980). The phospholipid components of small unilamellar liposome controls the rate of clearance of entrapped solutes from the circulation. FEBS Lett 119, 43–46.

    Google Scholar 

  • Gregoriadis, G. (1983). Liposomes Technology. CRC Press Inc. Florida (In press). Leserman, L.D. and Barbet, J. (eds.) (1982). Méthodologie des liposomes, Inserm, Paris.

    Google Scholar 

  • Huang, A., Huang, L. and Kennel, S.J. (1980). Monoclonal antibody covalently coupled with fatty acid. J. Biol. Chem., 255, 8015–8018.

    Google Scholar 

  • Kirby, C. and Gregoriadis, G. (1981). Plasma-induced release of solutes from small unilamellar liposomes is associated with pore formation in the bilayers. Biochem. J. 199, 251–254.

    Google Scholar 

  • Kirby, C., Clark, J. and Gregoriadis, G. (1980a). Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro. Biochem. J. 186, 591–598.

    Google Scholar 

  • Kirby, C., Clarke, J. and Gregoriadis, G. (1980b). Cholesterol content of small unilamellar liposomes controls phospholipid loss to high density lipoproteins in the presence of serum. FEBS Lett 111, 324–328.

    Google Scholar 

  • Kirby, C. and Gregoriadis, G. (1980). The effect of the cholesterol content of small unilamellar liposomes on the fate of their lipid components in vivo. Life Sci, 27, 2223–2230.

    Google Scholar 

  • Leserman, L.D., Barbet, J., Kourisky, F. and Weinstein, J.N. (1980). Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody of protein A. Nature, 288, 602–604.

    Google Scholar 

  • Mauk, M.R., Gamble, R.C. and Baldeschwieler, J.D. Targeting of lipid vesicles: specificity of carbohydrate receptor analogues for leucocytes in mice. Proc. Nat. Acad. Sci. USA 77, 4430–4434.

    Google Scholar 

  • McCullough, H.N. and Juliano, R.L. (1979). Organ-selective action of an antitumour drug: pharmacologic studies of liposome-encapsulated β-cytosine arabinoside administered via the respiratory system of the rat. J. Nat. Cancer. Inst., 63, 727–731.

    Google Scholar 

  • New, R.R.C., Chance, M.L., Thomas, S.C. and Peters, W. (1978). Antileishmanial activity of antirnonial entrapped in liposomes. Nature, 272, 55–56.

    Google Scholar 

  • Osborne, M.P., Richardson, V.J., Jehasingh, K. and Ryman, B.E. (1979). Radionuclide-labelled liposomes: a new lymph node imaging agent. J. Nucl. Med. Biol., 675–683.

    Google Scholar 

  • Poste, G., Kirsh, R., Fogler, W.E. and Fidler, I.J. (1979). Activation of tumourcidal properties in mouse macrophages by lymphokines encapsulated in liposomes. Cancer Res., 39, 881–892.

    Google Scholar 

  • Poste, G. (1980). The interaction of lipid vesicles (liposomes) with cultured cells and their use as carriers for drugs and macromolecules. In: Liposomes in biological systems. (eds. G. Gregoriadis and A.C. Allison) John Wiley and Sons. Chichester, New York

    Google Scholar 

  • Rahman, Y.E. (1980). Liposomes and chelating agents. In: Liposomes in biological systems. (eds. G. Gregoriadis, and A.C. Allison. John Wiley and Sons. Chichester, New York.

    Google Scholar 

  • Ryman, B.E., Jewkes, R.F. and Jegsingh, K. (1978) Potential applications of liposomes to therapy. Ann NY Acad Sci, 308, 281–307.

    Google Scholar 

  • Gregoriadis, G., Weereratne, H., Blair, H. and Bull, G.M. (1982b) Liposomes in Gaucher’s disease type I: use in therapy and the creation of an animal model. In: Gaucher’s disease. The most prevalent Jewish genetic disease (ed. R.J. Desnick) Alan L. Liss, New York.

    Google Scholar 

  • Gregoriadis, G. and Neerunjun, E.D., (1975). Homing of liposomes to target cells. Biochem. Biophys. Res. Comm. 65, 537–44.

    Google Scholar 

  • Heath, T.D., Fraley, R.T. and Papahadjopoulos, D. (1980). Antibody targeting of liposomes: cell specificity obtained by conjugation of F(ab’) to vesicle surface. Science, 210, 539–41.

    Google Scholar 

  • Hemker, HJ.C., Muller, A.D., Hermans, W. Th. and Swaal, R.F.A. (1980). Oral treatment of haemophilia A by gastrointestinal absorption of factor VIII entrapped in liposomes. Lancet, i, 70–71.

    Google Scholar 

  • Scherphof, G., Roerdink, F., Waite, M. and Parks, J. (1978). Disintegration of phosphatidylcholine liposomes in plasma as a result of interaction with high-density lipoproteins. Biochim. Biophys. Acta. 542, 296–307.

    Google Scholar 

  • Segal, A.W., Gregoriadis, G. and Black, C.D.V. (1975). Liposomes as vehicles for the local release of drugs. Clin. Sci. Mol. Med., 49, 99–106.

    Google Scholar 

  • Senior, J. and Gregoriadis, G. (1982). Stability of small unilamellar liposomes in serum and clearance from the circulation: the effect of the phospholipid and cholesterol components. Life Sci. 30, 2123–2136.

    Google Scholar 

  • Szmuness, S., Stevens, C.E., Harley, E.J., Zang, E.A., Eleszko, W.R., Williams, D.C., Sadovsky, R., Morrison, J.M. and Kellner, A. (1980). Hepatitis B vaccine. Demonstration of efficiency in a controlled clinical trial in a high risk population in the USA. N. Engl. J. Med. 303, 833–841.

    Google Scholar 

  • Weinstein, J.N., Magin R.L., Yatvin, M.B. and Saharko, D.S. (1979). Liposomes and local hyperthermia; delivery of methotrexate to heated tumours. Science, 204, 188–91.

    Google Scholar 

  • Yatvin, M.B., Kreutz, W., Horwitz, B.A. and Shinitzky, M. (1980). pH-sensitive liposomes: Possible clinical implications. Science, 210, 1353–55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1983 The Contributors

About this chapter

Cite this chapter

Gregoriadis, G. (1983). Targeting of drugs with liposomes. In: Edwards, D.I., Hiscock, D.R. (eds) Chemotherapeutic Strategy. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-06540-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-06540-0_14

  • Publisher Name: Palgrave Macmillan, London

  • Print ISBN: 978-1-349-06542-4

  • Online ISBN: 978-1-349-06540-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics