Alterations in methylation affect polyamine biosynthesis in mouse brain

  • Raffele Porta
  • Robert A Schatz
  • Otto Z Sellinger

Abstract

In recent years work from our laboratory has demonstrated that an increased transmethylation flux is a general characteristic of the epileptogenic brain. The relevant observations include a) decreased brain levels of AdoMet without a corresponding inhibition of the AdoMet biosynthetic enzyme (Schatz and Sellinger, 1975a; Schatz et al. ,1973; Tatter et al. ,1981); b) increased activity of several brain enzymes methylating biogenic amines (Schatz and Sellinger, 1975b; Schatz et al. ,1978), transfer ribonucleic acids (Salas et al. ,1977; Dainat et al. ,1978), and proteins and phospholipids (Schatz et al. ,1981a); and c) reduced brain levels of AdoHcy (Schatz et al. ,1977), a potent endogenous inhibitor of all methyltransferases.

Keywords

Cage Adenosine Methionine Sulfoxi Doyle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D.J., Crossland, J. and Shaw, G.G. (1975). The Actions of Spermidine and Spermine on the Central Nervous System. Neuropharmacology, 14 ,571–577.PubMedCrossRefGoogle Scholar
  2. Antrup, H. and Seiler, N. (1980). On the Turnover of Polyamines Spermidine and Spermine in Mouse Brain and Other Organs. Neurochem. Res., 5 ,123–143.PubMedCrossRefGoogle Scholar
  3. Backlund Jr., P.S. and Smith, R.A. (1981). Methionine Synthesis From 5’-methylthioadenosine in Rat Liver. J. Bio. Chem., 256 ,1533–1535.Google Scholar
  4. Dainat, J., Salas, C.E. and Sellinger, O.Z. (1978). Alterations of the Specificity of Brain tRNA Methyltransferase and of the Pattern of Brain tRNA Methylation In Vivo by Methionine Sulfoximine. Biochem. Pharmacol., 27 ,2655–2658.Google Scholar
  5. Fonlupt, P., Roche, M., Cronenberger, L. and Pacheco, H. (1980a). La S-adenosyl-L-homocysteine: 1. Inductrice de Sommeil. Can. J. Physiol. Pharmacol., 58 ,160–166.Google Scholar
  6. Fonlupt, P., Roche, M., Andre, A.C., Cronenberger, L. and Pacheco, H. (1980b). La S-adenosyl-L-homocysteine: 2. Anticonvulsivante. Can. J. Physiol. Pharmacol., 58 ,493–498.Google Scholar
  7. Heby, O., Suater, S. and Russell, D.H. (1973). Stimulation of Ornithine Decarboxylase and Inhibition of S-adenosylmethionine Decarboxylase Activity in Leukemic Mice by Methylglyoxal Bis(guanylhydrazone). Biochem. J., 136 ,1121–1124.Google Scholar
  8. Holtta, E., Hannonen, P., Pipsa, J. and Janne, J. (1973). Effect of Methylglyoxal Bis(guanylhydrazone) on Polyamine Metabolism in Normal and Regenerating Rat Liver. Biochem. J., 136 ,669–676.Google Scholar
  9. Kay, J.E. and Lindsay, V.J. (1973). Control of Ornithine Decarboxylase Activity in Stimulated Human Lymphocytes by Putrescine and Spermidine. Biochem. J., 132 ,791–796.Google Scholar
  10. Nistico, G., Ientile, R., Rotiroti, D. and Di Giorgio, R.M. (1980). GABA Depletion and Behavioral Changes Produced by Intraventricular Putrescine in Chicks. Biochem. Pharmacol., 29 ,954–957.Google Scholar
  11. Pegg, A.E. (1973). Inhibition of Spermidine Formation in Rat Liver and Kidney by Methylglyoxal Bis(guanylhydrazone). Biochem. J., 132 ,537–540.Google Scholar
  12. Porta, R., Doyle, R.L., Tatter, S.B., Wilens, T.E., Schatz, R.A., and Sellinger, O.Z. (1981a). The Biosynthesis of Polyamines in the Brain of Audiogenic Seizure-susceptible and -resistant Deermice. J. Neurochem., 37 ,723–729.Google Scholar
  13. Porta, R., Schatz, R.A. and Sellinger, O.Z. (1981b). The Modulation of Brain Methylation Affects Brain Polyamine Biosynthesis. Trans. Am. Neurochem. Soc., 12 ,150.Google Scholar
  14. Sakurada, T., Onodera, K., Tadano, T. and Kisara, K. (1975). Effects of Polyamines on the Central Nervous System. Japan. J. Pharmacol., 25, 653–661.Google Scholar
  15. Sakurada, T. and Kisara, K. (1978). Effects of Intraventricularly Administered Polyamines Spermidine and Spermine on Sleep-wakefulness Cycles in Rats. Japan. J. Pharmacol., 28 ,125–132.Google Scholar
  16. Salas, C.E., Ohlsson, W.G. and sellinger, O.Z. (1977). The Stimulation of Cerebral N 2 -methyl and N 2-dimethyl Guanine-specific tRNA Methyltransferases by Methionine Sulfoximine: An In Vivo Study. Biochem. Biophys. Res. Commun., 76 ,1107–1115.Google Scholar
  17. Schatz, R.A., Diez Altares, M.D. and Sellinger, O.Z. (1973). Effect of Methionine (MET) and Methionine Sulfoximine (MSO) on Rat Brain S-adenosylmethionine (SAM). Trans. Am. Neurochem. Soc., 4 ,74.Google Scholar
  18. Schatz, R.A. and Sellinger, O.Z. (1975a). Effect of Methionine and Methionine Sulfoximine on Rat Brain S-adenosylmethionine Levels. J. Neurochem., 24 ,63–66.Google Scholar
  19. Schatz, R.A. and Sellinger, O.Z. (1975b). The Elevation of Cerebral Histamine-N- and Catechol-O-methyltransferase Activities by L-methionine-dl-sulfoximine. J. Neurochem., 25 ,73–78.Google Scholar
  20. Schatz, R.A., Vunnam, C.R. and Sellinger, O.Z. (1977). S-adenosyl-L-homocysteine in Brain: Regional Concentrations, Catabolism and the Effects of Methionine Sulfoximine. Neurochem. Res., 2 ,27–38.Google Scholar
  21. Schatz, R.A., Frye, K. and Sellinger, O.Z. (1978). Increased In Vivo Methylation of [3H]histamine in the Methionine Sulfoximine Epileptogenic Mouse Brain. J. Pharmacol. Exp. Ther., 207 ,794–800.Google Scholar
  22. Schatz, R.A., Wilens, T.E. and Sellinger, O.Z. (1981a). The Elevation of Brain S-adenosylhomocysteine In Vivo Counteracts the MSO-induced Increase in Phospholipid and Protein Carboxymethylation. Trans. Am. Neurochem. Soc., 12 ,151.Google Scholar
  23. Schatz, R.A., Wilens, T.E. and Sellinger, O.Z. (1981b). Decreased In Vivo Protein and Phospholipid Methylation After In Vivo Elevation of Brain S-adenosyl-homocysteine. Biochem. Biophys. Res. Commun., 98 ,1097–1107.Google Scholar
  24. Schatz, R.A., Wilens, T.E. and Sellinger, O.Z. (1981c). Decreased Transmethylation of Biogenic Amines After In Vivo Elevation of Brain S-adenosyl-L-homocysteine. J. Neurochem., 36 ,1739–1748.Google Scholar
  25. Seiler, N. (1981). Polyamine Metabolism and Formation in Brain. Neurochem. Intern., 3 ,95–110.Google Scholar
  26. Shapiro, S.K. and Schlenk, F. (1980). Conversion of 5’-methylthioadenosine into S-adenosylmethionine by Yeast Cells. Biochim. Biophys. Acta, 633 ,176–180.Google Scholar
  27. Sturman, J.A. (1976). Effect of Methylglyoxal Bis(guanylhydrazone) (MGBG) In Vivo on the Decarboxylation of S-adenosylmethionine and Synthesis of Spermidine in the Rat and Guinea Pig. Life Sci., 18 ,879–886.Google Scholar
  28. Tatter, S.B., Schatz, R.A. and Sellinger, O.Z. (1981). ATP: Methionine Adenosyltransferase and Methionine Sulfoximine Epileptogenesis. University of Michigan Student Medical Research Forum, Ann Arbor, Michigan.Google Scholar
  29. Williams-Ashman, H.G. and Schenone, A. (1972). Methylglyoxal Bis(guanylhydrazone) as a Potent Inhibitor of Mammalian and Yeast S-adenosylmethionine Decarboxylase. Biochem. Biophys. Res. Commun., 46 ,288–295.CrossRefGoogle Scholar

Copyright information

© The contributors 1982

Authors and Affiliations

  • Raffele Porta
  • Robert A Schatz
  • Otto Z Sellinger

There are no affiliations available

Personalised recommendations