Skip to main content

Inhibition of protein carboxyl methyl esterification by 5’-methylthioadenosine

  • Chapter
Biochemistry of S-Adenosylmethionine and Related Compounds

Abstract

S-Adenosylmethionine:protein carboxyl O-methyltransferase (EC 2.1.1.24; protein methylase II; PM II) methyl esterifies free carboxyl groups of proteins with S-adenosylmethionine (AdoMet) as the methyl donor (Kim et al., 1970; Paik et al., 1980). The protein carboxyl methyl esters formed are unstable and are enzymatically and/or spontaneously hydrolyzed yielding methanol and the unmodified protein (Paik et al., 1980). This reaction, involving the reversible neutralization of the negative charges of proteins, can be considered as an “on-off” mechanism by which a number of cellular events are regulated. The role of PM II in the synaptic function, neurose-cretory processes, and bacterial and mammalian chemotaxis has been reported by several laboratories (Paik et al., 1980; O’Dea et al., 1981). Furthermore, it has been suggested that protein methylase II could modulate the calcium-dependent cellular activities trough the methyl esterification of calmodulin (Gagnon et al., 1981). Because of the involvement of PM II in such a number of basic cellular functions, the regulatory role of the enzyme in the cell growth and differentiation appears highly conceivable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cartenì-Farina, M., Della Ragione, F., Ragosta, G., Oliva, A. and Zappia, V. (1979). Studies on the metabolism of 5’-isobutylthioadenosine (SIBA) — Phosphorolytic cleavage by methylthioadenosine phosphorylase. FEBS Letters, 104, 266–270.

    Article  PubMed  Google Scholar 

  • Freitag, C. and Clarke, S. (1981). Reversible methylation of cytoskeletal and membrane proteins in intact human erythrocytes. J. Biol. Chem., 256, 6102–6108.

    PubMed  CAS  Google Scholar 

  • Gagnon, C., Kelly, S., Manganiello, V., Vaughan, M., Odya, C., Stritmatter, W., Hoffman, A. and Hirata, F. (1981). Modification of calmodulin function by enzymatic carboxyl methylation. Nature, 291, 515–516.

    Article  PubMed  CAS  Google Scholar 

  • Galletti, P., Paik, W.K. and Kim, S. (1979). Methyl acceptors for protein methylase II from human-erythrocyte membrane. Eur. J. Biochem., 97, 221–227.

    Article  PubMed  CAS  Google Scholar 

  • Galletti, P., Oliva, A., Manna, C., Della Ragione, F. and Cartenì-Farina, M. (1981). Effect of 5’-methylthioadenosine on in vivo methyl esterification of human erythrocyte membrane proteins. FEBS Letters, 126, 236–240.

    Article  PubMed  CAS  Google Scholar 

  • Hibasami, H., Borchardt, R.T., Chen, S.Y., Coward, J.K. and Pegg, A.E. (1980). Studies of inhibition of rat spermidine synthase and spermine synthase. Biochem. J., 87, 419–428.

    Article  Google Scholar 

  • Kim, S. and Paik, W.K. (1970). Purification and properties of protein methylase II. J. Biol. Chem., 245, 1806–1813.

    PubMed  CAS  Google Scholar 

  • Kim, S., Galletti, P. and Paik, W.K. (1980). In vivo carboxyl methylation of human erythrocyte membrane proteins. J. Biol. Chem., 255, 338–341.

    PubMed  CAS  Google Scholar 

  • O’Dea, R.F., Viveros, O.H. and Diliberto, E.J.,Jr. (1981). Protein carboxymethylation: Role in the regulation of cell functions. Biochem. Pharmacol., 30, 1163–1168.

    Article  PubMed  Google Scholar 

  • Oliva, A., Galletti, P., Zappia, V., Paik, W.K. and Kim, S. (1980) Studies on substrate specificity of S-adenosylmethionine:protein carboxyl methyltransferase from calf brain. Eur. J. Biochem., 104, 595–602.

    Article  PubMed  CAS  Google Scholar 

  • Paik, W.K. and Kim, S. (1980). In Protein Methylation, (ed. J. Wiley), New York.

    Google Scholar 

  • Pegg, A.E., Borchardt, R.T. and Coward, J.K. (1981). Effects of inhibitors of spermidine and spermine synthesis on polyamine concentrations and growth of transformed mouse fibroblasts. Biochem. J., 194, 78–79.

    Article  Google Scholar 

  • Terwilliger, T.C. and Clark, S. (1981). Methylation of membrane proteins in human erythrocytes. Identification and characterization of polypeptides methylated in lysed cells. J. Biol. Chem., 256, 3067–3076.

    PubMed  CAS  Google Scholar 

  • Vanderbark, A.A., Ferro, A.J. and Barney, C.L. (1980). Inhibition of lymphocyte transformation by a natural occurring metabolite: 5’-methylthioadenosine. Cell. Immunol., 49, 26–33.

    Article  Google Scholar 

  • Williams-Ashman, H.G., Seidenfeld, J. and Galletti, P. (1981). Trends in the biochemical pharmacology of 5’-deoxy-5’-methylthioadenosine. Biochem. Pharmacol., in press.

    Google Scholar 

  • Zappia, V., Cartenì-Farina, M., Cacciapuoti, G., Oliva, A. and Gambacorta, A. (1980a). Recent studies on the metabolism of 5’-methylthioadenosine. In Natural Sulfur Compounds: Novel Biochemical and Structural Aspects. (eds. D. Cavallini, G. E. Gaull and V. Zappia), Plenum Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 1982 The contributors

About this chapter

Cite this chapter

Galletti, P., Oliva, A., Manna, C., Ingrosso, D., Cartenì-Farina, M. (1982). Inhibition of protein carboxyl methyl esterification by 5’-methylthioadenosine. In: Biochemistry of S-Adenosylmethionine and Related Compounds. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-06343-7_6

Download citation

Publish with us

Policies and ethics