Skip to main content
  • 49 Accesses

Abstract

The flat-plate solar collector is essentially a heat exchanger in which the radiant energy of the Sun is converted to low-grade thermal energy. The concept is not new as some of the earliest recorded examples of the use of flat-plate collectors occurred around a hundred years ago [4.1, 4.2]. The thermal energy obtained in the conversion process is manifest as an enthalpy increase of the fluid that is flowing through the collector, which may be either liquid or gas. Most flat-plate collectors are used for heating water although collectors for heating air are used in direct warm-air space-heating applications. In some early installations the enthalpy increase resulted in the boiling of a liquid, either for the purpose of producing mechanical shaft work [4.3] or for pumping water [4.4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harding, J., ‘Apparatus for solar distillation’, Minut. Proc. Inst. Civ. Eng. Vol. 73, pp. 284–288 (1883).

    Google Scholar 

  2. Anon., ‘The utilization of solar heat for the elevation of water’, Scientific American, Vol. 53, No. 13, p. 214 (1885).

    Google Scholar 

  3. Willsie, H.E., ‘Experiments in the development of power from the Sun’s heat, Engng. News, N.Y., Vol. 61, No. 19, pp. 511–514 (1909).

    Google Scholar 

  4. Anon., ‘Power from sunshine — a pioneer solar power plant by Frank Shuman’, Scientific American, Vol. 105, No. 14, pp. 291–292 (1911).

    Google Scholar 

  5. Fourier, J.B., Théorie analytique de la chaleur, Paris, 1822. Republished in English (translated by A. Fruman), as Analytical Theory of Heat, Dover Publications, New York, 1955.

    Google Scholar 

  6. Kreith, F., Principles of Heat Transfer, 3rd edition, Harper and Row, New York, 1976.

    Google Scholar 

  7. Duffie, J.A. and Beckman, W.A., Solar Engineering of Thermal Processes, John Wiley, New York, 1980.

    Google Scholar 

  8. Kreith, F. and Kreider, J.F., Principles of Solar Engineering, Hemisphere Publishing Corporation, Washington, D.C., 1978.

    Google Scholar 

  9. Tabor, H., ‘Radiation, convection and conduction coefficients in solar collectors’, Bull. Res. Council Israel, Vol. 6C, p. 155 (1958).

    Google Scholar 

  10. Jakob, M., Heat Transfer, Vol. 1, John Wiley, New York, 1957.

    Google Scholar 

  11. Wong, H.Y., Heat Transfer for Engineers, Longman, London, 1977.

    Google Scholar 

  12. Pivovonsky, M. and Nagel, M.R., Tables of Blackbody Radiation Properties, Macmillan, New York, 1961.

    Google Scholar 

  13. Klein, S.A., ‘Calculation of the monthly average transmittance-absorptance product’, Solar Energy, Vol. 23, p. 547 (1979).

    Article  Google Scholar 

  14. Brandemuehl, M.J. and Beckman, W.A. ‘Transmission of diffuse radiation through CPC and flat plate collector glazings’, Solar Energy, Vol. 24, pp. 511–513 (1980).

    Article  Google Scholar 

  15. Page, J.K. et al., Solar Energy, a U.K. Assessment, ISES, London (1976).

    Google Scholar 

  16. Hottel, H.C. and Woertz, B.B., ‘Performance of flat plate solar heat collectors’, Trans. ASME, Vol. 64, p. 91 (1942).

    Google Scholar 

  17. Klein, S.A., ‘Calculation of flat-plate collector loss coefficients’, Solar Energy, Vol. 17, pp. 79–80 (1975).

    Article  Google Scholar 

  18. Kovarik, M., ‘Optimal distribution of heat conducting material in the finned pipe solar energy collector’, Solar Energy, Vol. 21, pp. 477–484 (1978).

    Article  Google Scholar 

  19. Hottel, H.C. and Whillier, A., ‘Evaluation of flat plate collector performance’, Trans. Conf. use of Solar Energy, Vol. 2 Part 1, University of Arizona Press, Tucson, Arizona, 1958, P. 74.

    Google Scholar 

  20. Whillier, A., Solar energy collection and its utilization for house heating. Sc.D. Thesis (Mech. Eng.), M.I.T., Cambridge, Massachusetts (1953),

    Google Scholar 

  21. Bliss, R,W., ‘The derivation of several plate efficiency factors useful in the design of flat plate solar heat collectors’, Solar Energy, Vol. 4, No. 3, p. 55 (1959).

    Article  Google Scholar 

  22. Phillips, W.F., ‘The effects of axial conduction on collector heat removal factor’, Solar Energy, Vol. 23, pp. 187–192 (1979).

    Article  Google Scholar 

  23. Dusinberre, G.M., Heat Transfer Calculations by Finite Differences, International Textbook Company, Scranton, Pennsylvania, 1961.

    Google Scholar 

  24. Wijeysundera, N.E., ‘Comparison of transient heat transfer models for flat plate collectors’, Solar Energy, Vol. 21, pp. 513–521 (1978).

    Article  Google Scholar 

  25. Gillett, W.B., Rawcliffe, R.W. and Green, A.A., Collector testing using solar simulators, UK-ISES Proceedings C22, ISES, London, 1980, pp. 57–71.

    Google Scholar 

  26. Aranovitch, E. and Roumengous, C., Solar Collector Testing Activities in the European Community, UK-ISES Proceedings C22, ISES, London, 1980, pp. 21–43.

    Google Scholar 

  27. Rogers, B.A., Transient Testing of Collectors, UK-ISES Proceedings C22, ISES, London, 1980, pp. 45–55.

    Google Scholar 

  28. BS 5918: Code of practice for solar heating systems for domestic hot water, British Standards Institution, London (1980).

    Google Scholar 

  29. Hamid, Y.H. and Beckman, W.A., Performance of air cooled radiatively heated screen matrices, Trans. ASME, J. Engineering for Power, Vol. 93, p. 221 (1971).

    Article  Google Scholar 

  30. Selcuk, K., ‘Thermal and economic analysis of the overlapped glass plate solar air heaters’, Solar Energy, Vol. 13, p. 165 (1971).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 1984 J. R. Simonson

About this chapter

Cite this chapter

Simonson, J.R. (1984). Flat-Plate Collector Analysis. In: Computing Methods in Solar Heating Design. Palgrave, London. https://doi.org/10.1007/978-1-349-06296-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-06296-6_4

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-06298-0

  • Online ISBN: 978-1-349-06296-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics