Skip to main content
  • 68 Accesses

Abstract

In the previous chapter it was seen that it is impracticable to attempt to measure solar irradiance on other than horizontal surfaces at selected locations, and in this chapter it will be shown how this measured irradiance is used in the calculation of incident irradiation on collector surfaces. Initially the extent of available data will be considered and then calculation procedures will be described using both hourly and monthly average daily data. This will be followed by procedures based on calculated extraterrestrial radiation and measured global radiation only. Recent studies to predict solar radiation from meteorological data will then be described and the chapter will be concluded with a consideration of data presentation for long-term performance predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Richards, C.J., ‘Solar energy and the Meteorological Office’, The National Radiation Centre, Helios No. 9, published by The Solar Energy Unit, University College, Cardiff, 1980, pp. 6–9.

    Google Scholar 

  2. Duffie, J.A. and Beckman, W.A., Solar Engineering of Thermal Processes, John Wiley, New York, 1980, p. 21.

    Google Scholar 

  3. Liu, B.Y.H. and Jordan, R.C., ‘Daily insolation on surfaces tilted towards the equator’, Trans. ASHRAE, pp. 526–541 (1962).

    Google Scholar 

  4. Rodgers, G.G., Page, J.K., and Souster, C.G., ‘Mathematical models for estimating the irradiance falling on inclined surfaces for clear, overcast and average conditions’, UK-ISES Proc. Vol. C18, pp. 48–62 (1979).

    Google Scholar 

  5. Dave, J.V., ‘Isotropic distribution approximations in solar energy estimations’, Solar Energy, Vol. 22, pp. 15–19 (1979).

    Article  Google Scholar 

  6. Simonson, J.R., ‘The simulation of partially and fully tracking flat plate collectors in northern latitudes’, proc. ISES Silver Jubilee Meeting, Atlanta, Vol. 3, pp. 2214–2218 (1979).

    Google Scholar 

  7. Simonson, J.R., ‘The use of weighted R b factors in calculating monthly average irradiation on tilted surfaces’, Solar Energy, Vol. 27, pp. 445–448 (1981).

    Article  Google Scholar 

  8. Klein, S.A., ‘Calculation of the monthly average transmittance absorptance product’, Solar Energy, Vol. 23, pp. 547–552 (1979).

    Article  Google Scholar 

  9. Brandemuehl, M.J. and Beckman, W.A., ‘The transmission of diffuse radiation through CPC and flat-plate collector glazings’, Solar Energy, Vol. 24, pp. 511–513 (1980).

    Article  Google Scholar 

  10. Page, J.K., ‘The estimation of monthly mean values of daily short wave radiation on vertical and inclined surfaces from sunshine records for latitudes 40&;#x00B0;N-40&;#x00B0;S’, Proc. U.N. Conf. New Sources of Energy, Vol. 4, p. 378 (1966).

    Google Scholar 

  11. Iqbal, M., ‘Correlations of average diffuse and beam radiation with hours of bright sunshine’, Solar Energy, Vol. 23, pp. 169–174 (1979).

    Article  Google Scholar 

  12. Cowley, J.P., ‘The distribution over Great Britain of global solar irradiation on a horizontal surface’, Meteorological Magazine, Vol. 107, pp. 357–373 (1978)

    Google Scholar 

  13. Sears, R.D., Flocchini, R.G., and Hatfield, J.L., ‘Correlations of total diffuse and direct solar radiation with the percentage of possible sunshine for Davis, California’, Solar Energy, Vol. 27, pp. 357–360 (1981).

    Article  Google Scholar 

  14. Klein, S.A., ‘Calculation of monthly average insolation on tilted surfaces’ Solar Energy, Vol. 19, pp. 325–329 (1977); Vol. 20, p. 441 (1978).

    Google Scholar 

  15. Thekaekara, M.P. and Drummond, A.J., ‘Standard values for the Solar Constant and its spectral components’, Nat. Phys. Sci., Vol. 6, p. 229 (1971).

    Google Scholar 

  16. Tuller, S.E., ‘The relationship between diffuse, total and extraterrestrial solar radiation’, Solar Energy, Vol. 18, pp. 259–264 (1976).

    Article  Google Scholar 

  17. Klein, S.A. and Duffie, J.A. ‘Estimation of monthly average diffuse radiation’, Proc. 1978 Annual Meeting Am. ISES, Denver, Part 2.2, p. 672 (1978).

    Google Scholar 

  18. Liu, B.Y.H., and Jordan, R.C., ‘Availability of solar energy for flat plate solar heat collectors’, Paper in Applications of Solar Energy for Heating and Cooling of Buildings, ASHRAE, New York (1977).

    Google Scholar 

  19. Whillier, A., ‘The determination of hourly values of total radiation from daily summations’, Arch. Met. Geophys. Bioklim., Series B, Vol. 7, p. 197 (1956).

    Article  Google Scholar 

  20. Whillier, A., ‘Solar Radiation Graphs’, Solar Energy, Vol. 9, p. 164, (1965).

    Article  Google Scholar 

  21. Collares-Pereira, M. and Rabl, A., ‘The average distribution of solar radiation-correlations between diffuse and hemispherical and between daily and hourly insolation values’, Solar Energy, Vol. 22, pp. 155–164 (1979).

    Article  Google Scholar 

  22. Orgill, J.F. and Hollands, K.G.T., ‘Correlation equations for hourly diffuse radiation on a horizontal surface’, Solar Energy, Vol. 19, p. 357 (1977).

    Article  Google Scholar 

  23. Atwater, M.A. and Ball, J.T., ‘A numerical solar radiation model based on standard meteorological observations’, Solar Energy, Vol. 21, pp. 163–170 (1978); ‘Effects of clouds on insolation models’, Solar Energy, Vol. 27, pp. 37–44 (1981).

    Article  Google Scholar 

  24. Hoyt, D.V., ‘A model for the calculation of solar global insolation’, Solar Energy, Vol. 21, pp. 27–36 (1978).

    Article  Google Scholar 

  25. Atwater, M.A. and Brown, P.S., Jr., ‘Numerical computations of the latitudinal variation of solar radiation for an atmosphere of varying opacity’, J. Appl. Meteor., Vol. 13, pp. 289–297 (1974).

    Article  Google Scholar 

  26. Atwater, M.A. and Lunde, P.J. ‘A cloud-cover radiation model producing results equivalent to measured radiation data’, Proc. ISES Silver Jubilee Meeting, At lanta, Vol. 3, pp. 2203–2207 (1979).

    Google Scholar 

  27. Haurwitz, G., ‘Insolation in relation to cloud type’, J. Meteor. Vol. 5, pp. 110–113 (1948).

    Article  Google Scholar 

  28. Whillier, A., Solar energy collection and its utilization for house heating, Sc.D. Thesis (Mech. Eng.), M.I.T., Cambridge, Massachusetts (1953).

    Google Scholar 

  29. Hottel, H.C. and Whillier, A., ‘Evaluation of flat plate collector performance’, Trans. Conf. use of Solar Energy, Vol. 2, Part 1, University of Arizona Press, Tucson, Arizona, 1958, p. 74.

    Google Scholar 

  30. Liu, B.Y.H. and Jordan, R.C. ‘A rational procedure for predicting the long term average performance of flat plate solar energy collectors’, Solar Energy, Vol. 7, p. 53 (1963).

    Article  Google Scholar 

  31. Klein, S.A., ‘Calculation of flat plate collector utilizability’, Solar Energy, Vol. 21, p. 393 (1978).

    Article  Google Scholar 

  32. Collares-Pereira, M. and Rabl, A., ‘Derivation of method for predicting long term average energy delivery of solar collectors’, Solar Energy, Vol. 23, pp. 223–234 (1979).

    Article  Google Scholar 

  33. Collares-Pereira, M. and Rabl, A., ‘Simple Procedure for predicting long term average performance of nonconcentrating and of concentrating solar collectors’, Solar Energy, Vol. 23, pp. 235–354 (1979).

    Article  Google Scholar 

  34. Lunde, P.J., Solar Thermal Engineering, John Wiley, New York (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 1984 J. R. Simonson

About this chapter

Cite this chapter

Simonson, J.R. (1984). The Calculation of Incident Radiation. In: Computing Methods in Solar Heating Design. Palgrave, London. https://doi.org/10.1007/978-1-349-06296-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-06296-6_3

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-06298-0

  • Online ISBN: 978-1-349-06296-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics