Skip to main content
  • 154 Accesses

Abstract

Tyrosine hydroxylase (EC 1.14.16.2), catalyzes the conversion of L-tyrosine to 3,4-dihydroxyphenylalanine (L-DOPA), which is generally regarded as the rate limiting reaction in catecholamine synthesis. The activity of tyrosine hydroxylase (TH) is regulated by cAMP-dependent protein phosphorylation processes both in vitro (Weiner, et al., 1977; Ames, et al., 1978; Yamauchi and Fujisawa, 1979) and in situ (Harris, et al., 1974; Goldstein, et al., 1976; Patrick and Barchas, 1976; Weiner, et al., 1977; Waymire, et al., 1979). In addition, results from a variety of biochemical studies indicate that total TH activity may be determined by the relative catalytic activities of different molecular forms of the enzyme (Musacchio, et al., 1971; Kuczenski, 1973; Joh and Reis, 1975; Raese, et al., 1977; Weiner, et al., 1977; Nagatsu, et al., 1978). Furthermore, the relative proportions of the less active and more active forms of TH may determine the potential degree of TH activation which can be elicited during studies of stress. For example, Masserano and Weiner (1979) found that the adrenal supernatant of non-stressed rats contains two components of TH activity which exhibit distinct kinetic properties, a component with a high affinity for cofactor and a component with a lower affinity for cofactor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ames, M., Lerner, P. and Lovenberg, W. (1978). Tyrosine hydroxylase, activation by protein phosphorylation and end product inhibition. J. Biol. Chem. 253, 27–31.

    CAS  PubMed  Google Scholar 

  • Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Chrambach, A. and Rodbard, D. (1971). Polyacrylamide gel electrophoresis. Science 172, 440–451.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein, M., Bronaugh, R., Ebstein, B. and Roberge, C. (1976). Stimulation of tyrosine hydroxylase activity by cyclic AMP in synaptosomes and in soluble striatal enzyme preparations. Brain Res. 109, 563–574.

    Article  CAS  PubMed  Google Scholar 

  • Harris, J., Morgenroth, V., Roth, R. and Baldessarini, R. (1974). Regulation of catecholamine synthesis in rat brain in vitro by cyclic AMP. Nature 252, 156–158.

    Article  CAS  PubMed  Google Scholar 

  • Joh, T. and Reis, D. (1975). Different forms of tyrosine hydroxylase in central dopaminergic and noradrenergic neurons and sympathetic ganglia. Brain Res. 85, 146–151.

    Article  CAS  PubMed  Google Scholar 

  • Kuczenski, R. (1973). Striatal tyrosine hydroxylase with high and low affinity for tyrosine: Implications for the multiple-pool concept of catecholamines. Life Sci. 13, 247–255.

    Article  CAS  PubMed  Google Scholar 

  • Masserano, J. and Weiner, N. (1979). The rapid activation of adrenal tyrosine hydroxylase by decapitation and its relationship to a cyclic AMP-dependent phosphorylating mechanism. Mol. Pharmacol. 16, 513–528.

    CAS  PubMed  Google Scholar 

  • Meligeni, J. and Weiner, N. (1980). Characteristics of rat pheochromocytoma tyrosine hydroxylase in the presence of cAMP-dependent phosphorylating conditions. Society for Neuroscience, Abstract #6.5.

    Google Scholar 

  • Meligeni, J., Tank, A. W., Stephens, J., Dreyer, E. and Weiner, N. (1981). In vivo phosphorylation of rat adrenal tyrosine hydroxylase during acute decapitation stress. In Cold Spring Harbor Symposium on Protein Phosphorylation, in press, Cold Spring Harbor Laboratory, N. Y.

    Google Scholar 

  • Musacchio, J., Wurzburger, R. and D’Angelo, G. (1971). Different molecular forms of bovine adrenal tyrosine hydroxylase. Mol. Pharmacol. 7, 135–146.

    Google Scholar 

  • Nagatsu, T., Numata (Sudo), Y., Kato, T., Sugiyama, K. and Akino, M. (1978). Effects of melanin on tyrosine hydroxylase and phenylalanine hydroxylase. Biochem. Biophys. Acta 523, 47–52.

    Google Scholar 

  • Patrick, R. and Barchas, J. (1976). Dopamine synthesis in rat brain striatal synaptosomes. II. Dibutyryl cyclic adenosine 3’:5’-monophosphoric acid and 6-methyltetrahydropterine-induced synthesis increases without an increase in endogenous dopamine release. J. Pharmacol. Exp. Ther. 197, 97–104.

    CAS  PubMed  Google Scholar 

  • Raese, J., Edelman, A., Lazar, M. and Barchas, J. (1977). Bovine striatal tyrosine hydroxylase: Multiple forms and evidence for phosphorylation by cyclic AMP-dependent protein kinase. In Structure and Function of Monoamine Enzymes (eds. E. Usdin, N. Weiner and M. B. H. Youdim), pp. 383–400, Marcel-Dekker, N. Y.

    Google Scholar 

  • Righetti, P. and Drysdale, J. (1976). Isoelectric focusing. In Laboratory Techniques in Biochemistry and Molecular Biology (eds. T. Work, E. Work), Vol. 5, pp. 335–381, American Elsevier, N. Y.

    Google Scholar 

  • Vulliet, P., Langan, T. and Weiner, N. (1980a). Tyrosine hydroxylase: A substrate of cyclic AMP-dependent protein kinase. Proc. Nat. Acad. Sci., U.S.A. 77, 92–96.

    Article  CAS  Google Scholar 

  • Vulliet, P., Meligeni, J. and Weiner, N. (1980b). Physical properties of rat pheochromocytoma tyrosine hydroxylase. The Pharmacologist 22, 237 (#431).

    Google Scholar 

  • Waymire, J., Bjur, R. and Weiner, N. (1971). Assay of ty4osine hydroxylase by coupled decarboxylation of dopa formed from 1- C-Ltyrosine. Anal. Biochem. 43, 588–600.

    Article  CAS  PubMed  Google Scholar 

  • Waymire, J., Haycock, J., Meligeni, J. and Browning, M. (1979). Activation and phosphorylation of tyrosine hydroxylase by cAMP. In Catecholamines: Frontiers in Basic and Clinical Research (eds. E. Usdin, I. Kopin and J. Barchas), pp. 40–42, Pergamon Press, N. Y.

    Chapter  Google Scholar 

  • Weiner, N., Lee, F.-L., Barnes, E. and Dryer, E. (1977). Enzymology of tyrosine hydroxylase and the role of cyclic nucleotides in its regulation. In Structure and Function of Monoamine Enzymes (eds. E. Usdin, N. Weiner and M. B. H. Youdim), pp. 109–148, Marcel Dekker, N. Y.

    Google Scholar 

  • Yamauchi, T. and Fujisawa, H. (1979). In vitro phosphorylation of bovine adrenal tyrosine hydroxylase by adenosine 3’:5’-monophosphatedependent protein kinase. J. Biol. Chem. 254, 503–507.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1981 The Contributors

About this chapter

Cite this chapter

Meligeni, J., Weiner, N. (1981). Isoelectric focusing of tyrosine hydroxylase. In: Usdin, E., Weiner, N., Youdim, M.B.H. (eds) Function and Regulation of Monoamine Enzymes: Basic and Clinical Aspects. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-06276-8_3

Download citation

Publish with us

Policies and ethics