Skip to main content

Abstract

Tyrosine hydroxylase activity is stimulated in vitro by a variety of seemingly unrelated compounds. These compounds include: 1) anions and polyanions such as heparin, polyglutamic acid and melanin (Kuczenski and Mandell, 1972; Katz et al., 1976; Nagatsu et al., 1978); 2) phospholipids (Lloyd and Kaufman, 1974; Raese et al., 1976; Lloyd, 1979); 3) ATP, Mg++ and cyclic AMP dependent protein kinase (Harris et al., 1974; Lovenberg et al., 1975); and 4) limited proteolysis (Kuczenski, 1973). The activation exhibited by these modulators is suprisingly similar, suggesting that a common mechanism might be involved (Katz et al., 1976; Weiner et al., 1978). For example, phospholipid activation and exposure to phosphorylating conditions result in a form of tyrosine hydroxylase that has a decreased Km for pterin cofactor with no change in the Vmax. Under conditions of maximal activation, the pH optimum of the enzyme is shifted from 6.2 to 6.4–6.8 (Lloyd and Kaufman, 1975; Weiner et al., 1978). The similarity of the kinetic changes may be explained by the ability of these agents to cause the tyrosine hydroxylase molecule to assume a common conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews, P. (1964). The gel filtration behaviour of proteins related to their molecular weights over a wide range. Biochem. J. 96, 595–606.

    Article  Google Scholar 

  • Gosting, L. (1956). Solution of boundary spreading equations for electrophoresis and the velocity ultracentrifuge. Advan. Protein Chem. 11, 429–485.

    Article  CAS  Google Scholar 

  • Harris, J., Morgenroth, V., III, Roth, R. and Baldessarini, R. (1974). Regulation of catecholamine synthesis in the rat brain in vitro by cyclic AMP. Nature 252, 156–158.

    Article  CAS  PubMed  Google Scholar 

  • Hoeldtke, R. and Kaufman, S. (1977). Bovine adrenal tyrosine hydroxylase: Purification and properties. J. Biol. Chem. 252, 3160–3169.

    CAS  PubMed  Google Scholar 

  • Katz, I., Yamauchi, T. and Kaufman, S. (1976). Activation of tyrosine hydroxylase by polyanions and salts. Biochem. Biophys. Acta. 444, 567–578.

    Google Scholar 

  • Kuczenski, R., and Mandell, A. (1972). Allosteric activation of hypothalamic tyrosine hydroxylase by ions and sulphated mucopolysaccarides. J. Neurochem. 19, 131–137.

    Article  CAS  PubMed  Google Scholar 

  • Kuczenski, R. (1973). Rat brain tyrosine hydroxylase: Activation by limited tryptic proteolysis. J. Biol. Chem. 248, 2261–2265.

    CAS  PubMed  Google Scholar 

  • Laemmli, U. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  • Laurent, T. and Killander, J. (1964). A theory of gel filtration and its experimental verification. J. Chromatog. 14, 317–330.

    Article  CAS  Google Scholar 

  • Lloyd, T. and Kaufman, S. (1974). The stimulation of partially purified bovine caudate tyrosine hydroxylase by phosphatidyl-L-serine. Biochem. Biophys. Res. Comm. 59, 1262–1269.

    Article  CAS  PubMed  Google Scholar 

  • Lloyd, T. (1979). The effects of phosphatidylinositol on tyrosine hydroxylase. J. Biol. Chem. 254, 7247–7254.

    CAS  PubMed  Google Scholar 

  • Lovenberg, W., Bruckwick, E. and Hanbauer, I. (1975). ATP, cyclic AMP and magnesium increase the affinity of rat striatal tyrosine hydroxylase for its cofactor. Proc. Nat. Acad. Sci. USA. 72, 2955–2958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markey, K., Kondo, S., Schenkman, L. and Goldstein, M. (1980). Purification and characterization of tyrosine hydroxylase from a clonal pheochromocytoma cell line. Molec. Pharm. 17, 79–85.

    CAS  PubMed  Google Scholar 

  • Martin, R. and Ames, B. (1961). A method for determining the sedimentation behavior of enzymes: Application to protein mixtures. J. Biol. Chem. 236, 1372–1379.

    CAS  PubMed  Google Scholar 

  • Masserano, J. and Weiner, N. (1979). The rapid activation of adrenal tyrosine hydroxylase by decapitation and its relationship to a cyclic AMP-dependent phosphorylating system. Molec. Pharmacol. 16, 513–528.

    CAS  Google Scholar 

  • Meligeni, J. and Weiner, N. (1981). Isoelectric focusing of tyrosine hydroxylase. This volume.

    Google Scholar 

  • Nagatsu, T., Numata (Sudo), Y., Kato, T., Sugiyama, K. and Akino, M. (1978). Effects of melanin on tyrosine hydroxylase and phenylalanine hydroxylase. Biochem. Biophys. Acta. 523, 47–52.

    Google Scholar 

  • Raese, J., Patrick, R. and Barchas, J. (1976). Phospholipid-induced activation of tyrosine hydroxylase from rat brain striatal synaptosomes. Biochem. Pharmacol. 25, 2245–2250.

    Article  CAS  PubMed  Google Scholar 

  • Raese, J., Edelman, A., Lazar, M. and Barchas, J. (1977). Bovine striatal tyrosine hydroxylase: Multiple forms and evidence for phosphorylation by cyclic AMP-dependent protein kinase. In Structure and Function of Monoamine Enzymes (eds. E. Usdin, N. Weiner and M.B.H. Youdim) Marcel Decker, Inc., New York, pp. 383–421.

    Google Scholar 

  • Siegel, L. and Monty, K. (1966). Determination of the molecular weights and frictional ratios of proteins in impure systems by use of gel filtration centrifugation. Applications to crude preparations of sulfite and hydroxylamine reductases. Biochim. Biophys. Acta. 112, 346–362.

    Article  CAS  PubMed  Google Scholar 

  • Vulliet, P., Langan, T. and Weiner, N. (1980a). Tyrosine hydroxylase: A substrate of cyclic AMP-dependent protein kinase in vitro. Proc Nat. Acad. Sci. USA. 77, 92–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vulliet, P., Meligeni, J. and Weiner, N. (1980b). Physical properties rat pheochromocytoma tyrosine hydroxylase. Pharmacologist 22, 237.

    Google Scholar 

  • Vulliet, P. and Weiner, N. (1978). Purification and characterization of tyrosine hydroxylase from rat pheochromocytoma. Fed. Proc. 37, 825.

    Google Scholar 

  • Waymire, J., Bjur, R. and Weiner, N. (1971). Assay of tyrosine hydroxylase by coupled decarboxylation of dopa formed from l-14C-L-tyrosine. Anal. Biochem. 43, 588–600.

    Article  CAS  PubMed  Google Scholar 

  • Weiner, N., Lee, F.-L., Dryer, E. and Barnes, E. (1978). The activation of tyrosine hydroxylase during acute nerve stimulation. Life Sci. 22, 1197–1216.

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi, T. and Fujisawa, H. (1979a). In Vitro phosphorylation of bovine adrenal tyrosine hydroxylase by adenosine 3’:5’-monophosphate dependent protein kinase. J. Biol. Chem. 254, 503–507.

    CAS  PubMed  Google Scholar 

  • Yamauchi, T. and Fujisawa, H. (1979b). Regulation of bovine adrenal tyrosine 3-monooxygenase by phosphorylation-dephosphorylation reaction, catalyzed by adenosine 3’:5’-monophosphate dependent protein kinase and phosphoprotein phosphatase. J. Biol. Chem. 254, 6408–6413.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1981 The Contributors

About this chapter

Cite this chapter

Vulliet, P.R., Weiner, N. (1981). A schematic model for the allosteric activation of tyrosine hydroxylase. In: Usdin, E., Weiner, N., Youdim, M.B.H. (eds) Function and Regulation of Monoamine Enzymes: Basic and Clinical Aspects. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-06276-8_2

Download citation

Publish with us

Policies and ethics