Advertisement

Early Arrhythmias, Myocardial Extracellular Potassium and pH

  • Hj. Hirche
  • R. Friedrich
  • U. Kebbel
  • F. McDonald
  • V. Zylka

Abstract

It is well known that following acute coronary artery occlusion ventricular arrhythmias occur in distinct phases (Harris, 1950; Haase and Schiller, 1969; Gettes, 1974; Gülker et al., 1977; Meesmann et al., 1978; Hirche et al., 1980). A first, early phase starts 3–5 min after the onset of occlusion and lasts about 5–10 min. In our studies following occlusion of the distal half of the left anterior descending coronary artery (LAD) in the pig, more than 50 per cent of the animals develop ventricular fibrillation (VF) during this first early phase (phase la). This phase la is followed by an interval without arrhythmias beginning about 8–10 min after the onset of occlusion and lasting for 4–10 min; 15–20 min after the onset of ischaemia the second early phase of arrhythmias (phase 1b) begins, lasting up to 15 min. About one-third of the animals develop VF during this phase (Hirche et al., 1980). This means that only 15–20 per cent of the control animals survive the la and 1b phases (Hirche et al., 1980, 1981c; Zylka et al., 1981). After this second, early phase of arrhythmias an intermediate phase of 4–8 h ensues during which arrhythmias seldom occur; 5–8 h after the onset of infarction a late phase of arrhythmias begins. This lasts 2–4 days with a maximal ectopic activity occurring at about 10–20 h after the onset of ischaemia (Harris, 1950). The reason for this sequence of post-ischaemia ventricular arrhythmias is not yet completely understood.

Keywords

Ventricular Arrhythmia Left Anterior Descend Ventricular Fibrillation Coronary Sinus Coronary Artery Occlusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antoni, H., Henkel, K. and Fleckenstein, A. (1963). Die Restitution der automatischen Erregungsbilding in Kalium-gelähmten Schrittmacher-Geweben durch Adrenalin. Pflügers Arch. ges. Physiol., 277, 633–49CrossRefGoogle Scholar
  2. Benzing, H., Strohm, M. and Gebert, G. (1972). The effect of local ischaemia on the ionic activity of dog myocardial interstitium. In Vascular Smooth Muscle (ed. E. Betz), Springer Verlag, Berlin, pp. 172–4Google Scholar
  3. Bös, L., Franz, Chr. and Hirche, Hj. (1978). Cardiac arrhythmia and increase of local myocardial extracellular K+ activity in pigs. J. Physiol., Lond., 284, 88PGoogle Scholar
  4. Braasch, W., Gudbjarnason, S., Puri, P., Ravens, K. G. and Bing, R. J. (1968). Early changes in energy metabolism in the myocardium following acute coronary artery occlusion in anaesthetized dogs. Circulation Res., 23, 429–38CrossRefGoogle Scholar
  5. Case, R. B., Felix, A. and Castellana, F. S. (1979). Rate of rise of myocardial p CO2 during early myocardial ischaemia in the dog. Circulation Res., 45, 324–30CrossRefGoogle Scholar
  6. Cherbakoff, A., Toyama, S. and Hamilton, W. F. (1957). Relation between coronary sinus plasma potassium and cardiac arrhythmia. Circulation Res., 5, 517–21CrossRefGoogle Scholar
  7. Cherry, G. and Myers, M. B. (1970). The relationship to ventricular fibrillation of early tissue sodium and potassium shifts and coronary vein potassium levels in experimental myocardial infarction. J. thorac. cardiovasc. Surg., 61, 587–98Google Scholar
  8. Cobbe, S. M. and Poole-Wilson, P. A. (1980). The time of onset and severity of acidosis in myocardial ischaemia. J. molec. cell. Cardiol., 12, 745–60CrossRefGoogle Scholar
  9. Downey, H. F. and Kirk, E. S. (1968). Coronary lymph: specific activities in interstitial fluid during uptake of 42K. Am. J. Physiol., 215, 1177–82Google Scholar
  10. Ettinger, P. O., Regan, T. J., Oldewurtel, H. A. and Khan, M. I. (1973). Ventricular conduction delay and arrhythmias during regional hyperkalaemia in the dog. Circulation Res., 33, 521–31CrossRefGoogle Scholar
  11. Fedor, J. M., McIntosh, D. M., Rembert, J. C. and Greenfield, J. C. (1978). Coronary and transmural myocardial blood flow response in awake pigs. Am. J. Physiol., 235, H435–44Google Scholar
  12. Franz, Chr., Lang, R., Bös, L., Schramm, M., Bissig, R. and Hirche, Hj. (1978). The release of K+ and noradrenaline as cause of arrhythmia and ventricular fibrillation following myocardial ischemia in pigs. Pflügers Arch. ges. Physiol., 377, Suppl. R3Google Scholar
  13. Gettes, L. S. (1974). Electrophysiologic basis of arrhythmias in acute myocardial ischemia. In Modern Trends in Cardiology, Vol. 3 (ed. M. F. Oliver), London, Butterworth, pp. 219–46Google Scholar
  14. Gettes, L. S. and Hill, J. L. (1981). The use of K+ sensitive electrodes to gain an understanding of myocardial ischemia. In Progress in Enzyme and Ion-selective Electrodes (ed. D. W. Lubbers, H. Acker, R. P. Buck, G. Eisenmann, M. Kessler and W. Simon), Springer Verlag, Berlin, pp. 171–8CrossRefGoogle Scholar
  15. Gülker, H., Kramer, B., Stephan, K. and Meesmann, W. (1977). Changes in ventricular fibrillation threshold during repeated short-term coronary occlusion and release. Basic Res. Cardiol., 72, 547–62CrossRefGoogle Scholar
  16. Haase, M. and Schiller, U. (1969). Zur zeitlichen Parallelität zwischen der Aktivität ektopischer Schrittmacher und dem Eintritt von Kammerflimmern nach Ligatur eines Hauptkoronarastes beim Hund. Acta biol. med. germ., 23, 413–22Google Scholar
  17. Harris, A. S. (1950). Delayed development of ventricular ectopic rhythm following experimental coronary occlusion. Circulation, 1, 1318–28CrossRefGoogle Scholar
  18. Harris, A. S., Toth, L. A. and Hoey, T. E. (1958). Arrhythmic and antiarrhythmic effects of sodium, potassium and calcium salts and of glucose injected into coronary arteries of infarcted and normal hearts. Circulation Res., 6, 570–9CrossRefGoogle Scholar
  19. Hill, J. L. and Gettes, L. S. (1980). Effect of acute coronary artery occlusion on local myocardial extracellular K+ activity in swine. Circulation, 61, 768–78CrossRefGoogle Scholar
  20. Hill, J. L., Gettes, L. S., Lynch, M. R. and Hebert, N. C. (1978). Flexible valinomycin electrodes for on-line determination of intravascular and myocardial K+. Am. J. Physiol., 235, H455–9Google Scholar
  21. Hirche, Hj., Gaehtgens, P., Hagemann, H., Kebbel, U., Kleine, H.-J., Schramm, M. and Schumacher, E. (1976). Untersuchungen über die Acidose im ischämischen Hundemyokard mit H+-sensitiven Minielektroden. Verh. dt. Ges. Kreislaufforsch., 42, 311–5CrossRefGoogle Scholar
  22. Hirche, Hj., Franz, Chr. and Bös, L. (1979). Ion-selective electrodes in cardiac ischemia. In Heart and Brain Infarct, II (ed. K. J. Zülch, W. Kaufmann, K. A. Hossmann and V. Hossman), Springer Verlag, Berlin, pp. 104–11CrossRefGoogle Scholar
  23. Hirche, Hj., Franz, Chr., Bös, L., Bissig, R., Lang, R. and Schramm, M. (1980). Myocardial extracellular K+ and H+ increase and noradrenaline release as possible cause of early arrhythmias following acute coronary artery occlusion in pigs. J. molec. cell. Cardiol., 12, 579–93CrossRefGoogle Scholar
  24. Hirche, Hj., Addicks, K., Deutsch, H. J., Friedrich, R., Griebenow, R., McDonald, F. M. and Zylka, V. (1981a). The effect of lignocaine on the release of K+ and of noradrenaline from ischemic pig heart. Pflügers Arch. ges. Physiol., 389, Suppl. R5Google Scholar
  25. Hirche, Hj., Bissig, R., Friedrich, R., Kebbel, U. and Zylka, V. (1981b). Measurement of myocardial extracellular Na+, K+, Ca2+, and H+ using ion-selective electrodes during ischemia. In Progress in Enzyme and Ion-selective Electrodes (ed. D. W. Lubbers, H. Acker, R. P. Buck, G. Eisenmann, M. Kessler and W. Simon), Springer Verlag, Berlin, pp. 164–70CrossRefGoogle Scholar
  26. Hirche, Hj., Friedrich, R. and Kebbel, U. (1981c). Potassium loss from ischemic myocardium. In Experimental Myocardial Ischemia and Infarction (ed. W. Schaper), Marcel Dekker, New York, in pressGoogle Scholar
  27. Holland, R. P. and Brooks, H. (1975). Precordial and epicardial surface potentials during myocardial ischemia in the pig. A theoretical and experimental analysis of the QT and ST segments. Circulation Res., 37, 471–9CrossRefGoogle Scholar
  28. Howe, B. B., Fehn, P. A. and Pensinger, R. R. (1968). Comparative anatomical studies of the coronary arteries of canine and porcine hearts. Acta anat., Basel, 71, 13–21CrossRefGoogle Scholar
  29. Kleber, A. G., Janse, M. J., Capelle, F. J. L.van and Durrer, D. (1978). Mechanism and time course of S-T and T-Q segment changes during acute regional myocardial ischemia in the pig heart determined by extracellular and intracellular recordings. Circulation Res., 42, 603–13CrossRefGoogle Scholar
  30. Lang, R., Franz, C., Hirche, Hj. and Kaufmann, W. (1979). Myokardiales Noradrenalin und prähospitale Infarktletalität. Verh. dt. Ges. inn. Med., 85, 865–7Google Scholar
  31. Marshall, R. J. and Parratt, J. R. (1975). Antiarrhythmic haemodynamic and metabolic effects of 3α-amino-5α-androstan-2β-ol-17-one hydrochloride in greyhounds following acute coronary artery ligation. Br. J. Pharmac., 55, 359–68CrossRefGoogle Scholar
  32. Meesmann, W., Weigand, V., Menken, U., Komhard, W. and Rehwald, U. (1978). Early mortality due to ventricular fibrillation and the vulnerability of the heart following acute experimental coronary occlusion. Possible mechanism and pharmacological prophylaxis. In The Arterial System. Dynamics, Control, Theory and Regulation (ed. R. D. Bauer and R. Busse), Springer Verlag, Berlin, pp. 275–84Google Scholar
  33. Opie, L. H., Nathan, R. and Lübbe, W. F. (1979). Biomedical aspects of arrhythmogenesis and ventricular fibrillation. Am. J. Cardiol., 43, 131–48CrossRefGoogle Scholar
  34. Staszewska-Barczak, J. (1971). The reflex stimulation of catecholamine secretion during the acute stage of myocardial infarction in the dog. Clin. Sci., 41, 419–39CrossRefGoogle Scholar
  35. Thomas, M., Shulman, G. and Opie, L. (1970). Arteriovenous potassium changes and ventricular arrhythmia after coronary artery occlusion. Cardiovasc. Res., 4, 327–33CrossRefGoogle Scholar
  36. Wiegand, V., Güggi, M., Meesmann, W., Kessler, M. and Greitschus, F. (1979) Extracellular potassium activity changes in the canine myocardium after acute coronary occlusion and the influence of β-blockade. Cardiovasc. Res., 13, 297–302CrossRefGoogle Scholar
  37. Zylka, V., Addicks, K., Deutsch, H. J., Friedrich, R., Griebenow, R. and Hirche, Hj. (1981). The antiarrhythmic effect of prostacyclin (PGI2) in severe myocardial ischemia of pig heart. Pflügers Arch., 389, Suppl. R1.CrossRefGoogle Scholar

Copyright information

© The contributors 1982

Authors and Affiliations

  • Hj. Hirche
  • R. Friedrich
  • U. Kebbel
  • F. McDonald
  • V. Zylka

There are no affiliations available

Personalised recommendations