Skip to main content

Stress-strain-related Depolarisation in the Myocardium and Arrhythmogenesis in Early Ischaemia

  • Chapter

Abstract

There is no entirely satisfactory explanation for the premature excitation that initiates ventricular fibrillation in the very early stages of myocardial ischaemia. The electrophysiological disturbances which accompany the ischaemia, such as differential changes in conduction velocity, re-entry and enhanced automaticity, have been invoked as causing ventricular flbrillation (chapters 3 and 4 in this book). However, correlation does not imply causality. There are severe mechanical disturbances during regional ischaemia and extrasystoles can accompany physical stresses and strains in the normal myocardium. A critical consideration of mechanical causes for extrasystoles during ischaemia is therefore appropriate. This chapter briefly discusses the mechanical generation of threshold excitations and considers the possibility that mechanical changes may induce ectopic impulses in early ischaemia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, D. G. and Kurihara, A. (1981). Length changes during contraction affect the intracellular Ca2+ of heart muscle. J. Physiol., Lond., 310, 75–6P

    Google Scholar 

  • Allen, D. G., Kurihara, A. and Orchard, C. H. (1981). The effects of reducing extracellular carbon dioxide concentration on intracellular calcium transients in mammalian cardiac muscle. J. Physiol., Lond., 317, 52P

    Google Scholar 

  • Bassingthwaighte, J. B., Fry, C. H. and McGuigan, J. A. S. (1976). Relationship between internal calcium and outward current in mammalian ventricular muscle; a mechanism for the control of the action potential duration. J. Physiol., Lond., 262, 15–37

    Article  Google Scholar 

  • Boland, J. and Troquet, J. (1980). Intracellular action potential changes induced in both ventricles of the rat by an acute right ventricular pressure overload. Cardiovasc. Res., 14, 735–40

    Article  Google Scholar 

  • Brooks, C. McC., Gilbert, J. L. and Suckling, E. E. (1964). Excitable cycle of the heart as determined by mechanical stimuli. Proc. Soc. exp. Biol. Med., 117, 634

    Article  Google Scholar 

  • Bülbring, E., Holman, M. and Lüllman, H. (1956). Effects of calcium deficiency on striated muscle of the frog. J. Physiol., Lond., 133, 101–17

    Article  Google Scholar 

  • Chapman, R. A. (1979). Excitation-contraction coupling in cardiac muscle. Progr. Biophys. molec. Biol., 35, 1–52

    Article  Google Scholar 

  • Covell, J. W., Lab, M. J. and Pavalec, R. (1981). Mechanical induction of paired action potentials in intact heart in situ. J. Physiol., Lond., 320, 34P

    Google Scholar 

  • Cranefield, P. F. (1977). Action potentials, afterpotentials and arrhythmias. Circulation Res., 41, 415–23

    Article  Google Scholar 

  • Cranefield, P. F. and Wit, A. L. (1979). Cardiac arrhythmias. A. Rev. Physiol., 41, 459–72

    Article  Google Scholar 

  • Czarnecka, M., Lewartowski, B. and Prokopczuk, A. (1973). Intracellular recording from the in situ working dog heart in physiological conditions and during acute ischaemia and fibrillation. Acta physiol. pol., 24, 331–7

    Google Scholar 

  • Deck, K. A. (1964). Anderungen des Rühepotentials und der Kabeleigenschaflen von Purkinje-Fäden bei der dehnung. Pflügers Arch. ges. Physiol., 280, 131–40

    Article  Google Scholar 

  • Downar, E., Janse, M. J. and Durrer, D. (1977). The effect of acute coronary artery occlusion on the subepicardial transmembrane potentials in the intact porcine heart. Circulation, 56, 217–24

    Article  Google Scholar 

  • Dudel, J. and Trautwein, W. (1954). Das Aktionspotential und Mechanogram des Herzmuskels unter dem Einflus der dehnung. Cardiologie, 25, 344–62

    Article  Google Scholar 

  • Eisner, D. A. and Lederer, W. J. (1979). Inotropic and arrhythmogenic effects of potassium-depleted solutions on mammalian cardiac muscle. J. Physiol., Lond., 294, 255–77

    Article  Google Scholar 

  • Harary, I., Renaud, J., Sato, E. and Wallace, G. A. (1976). Calcium ions regulate cyclic AMP and beating in cultured heart cells. Nature, Lond., 261, 60–1

    Article  Google Scholar 

  • Hauswirth, O. and Singh, B. H. (1978). Ionic mechanisms in heart muscle in relation to the genesis and pharmacological control of cardiac arrhythmias. Pharmac. Rev., 30, 5–63

    Google Scholar 

  • Hoffman, B. F., Cranefield, P. F., Lepeschkin, E., Surawicz, B. and Herrlich, H. C. (1959). Comparison of cardiac monophasic action potentials recorded by intracellular and suction electrodes. Am. J. Physiol., 196, 1297–301

    Google Scholar 

  • Hoffman, B. F. and Rosen, M. R. (1981). Cellular mechanisms for cardiac arrhythmias. Circulation Res., 49, 1–15

    Article  Google Scholar 

  • Hurst, J. W. and Logue, R. B. (1966). The Heart, Arteries and Veins, McGraw-Hill, New York

    Google Scholar 

  • Isenberg, G. (1975). Is potassium conductance of cardiac Purkinje fibres controlled by Ca2+? Nature, Lond., 253, 273–4

    Article  Google Scholar 

  • Ishiko, N. (1956). The effect of stretch on electrical properties of striated muscle of the frog. J. Physiol., Lond., 133, 101–17

    Article  Google Scholar 

  • Ishiko, N. (1958). Changes in resting and potentials of striated muscle fibres by stretch. Kumanato med. J., 11, 18–31

    Google Scholar 

  • Janse, M. J., van Capelle, F. J. L., Morsink, H., Kleber, A. G., Wilms-Schopman, F. W., Cardinal, R., D’Alnoncourt, C. N. and Durrer, D. (1980). Flow of ‘injury’ current and patterns of excitation during early ventricular arrhythmias in acute regional myocardial ischaemia in isolated porcine and canine hearts. Evidence for two different arrhythmogenic mechanisms. Circulation Res., 47, 151–65

    Article  Google Scholar 

  • Kass, R. S., Lederer, W. J., Tsien, R. W. and Weingart, R. (1978). Role of ionic basis of transient inward current induced by strophanthidin in cardiac Purkinje fibres. J. Physiol., Lond., 281, 209–26

    Article  Google Scholar 

  • Katz, A. M. (1979). Role of the contractile proteins and sarcoplasmic reticulum in the response of the heart to catecholamines: an historical review. Adv. cyclic Nucleotide Res., 11, 303–43

    Google Scholar 

  • Kaufmann, R. and Theophile, U. (1967). Automatie fordernde Dehnungseffects am Purkinje Faden, Pappilarmuskeln und vorhoftrabekeln von Rhesusaffen. Pflügers Arch. ges. Physiol., 291, 174–89

    Article  Google Scholar 

  • Kaufmann, R., Hennekes, R. and Lab, M. J. (1970). The latency period of feedback interaction between mechanical and electrical events in mammalian cardiac muscle. Pflügers Arch. ges. Physiol., 319, 10

    Google Scholar 

  • Kaufmann, R., Lab, M. J., Hennekes, R. and Krause, H. (1971). Feedback interaction of mechanical and electrical events in the isolated ventricular myocardium (cat papillary muscle). Pflügers Arch. ges. Physiol., 332, 96–116

    Article  Google Scholar 

  • Kline, R. and Morad, M. (1976). Potassium efflux and accumulation in heart muscle. Biophys. J., 16, 367–72

    Article  Google Scholar 

  • Kluge, W. F. and Vincenci, F. F. (1971). Mechanically-induced arrhythmias in digitalised hearts. J. Electrocardiol., 4, 11–18

    Article  Google Scholar 

  • Lab, M. J. (1969). The effect on the left ventricular action potential of clamping the aorta. J. Physiol., Lond., 202, 73–4P

    Google Scholar 

  • Lab, M. J. (1974). Mechano-electric interactions in cardiac muscle. PhD thesis, University of London

    Google Scholar 

  • Lab, M. J. (1978a). Mechanically dependent changes in action potentials recorded from the intact frog ventricle. Circulation Res., 42, 519–28

    Article  Google Scholar 

  • Lab, M. J. (1978b). Depolarization produced by mechanical changes in normal and abnormal myocardium. J. Physiol., Lond., 284, 143–4P

    Google Scholar 

  • Lab, M. J. (1982). Contraction-excitation feedback in myocardium: physiological basis and clinical relevance. Circulation Res., 50, 757–66

    Article  Google Scholar 

  • Lab, M. J. and Woollard, K. V. (1978). Monophasic action potential, electrocardiograms and mechanical performance in normal and ischaemic epicardial segments of the pig ventricle in situ. Cardiovasc. Res., 42, 519–28

    Google Scholar 

  • Ling, G. and Gerard, R. W. (1949). The influence of stretch on the membrane potential of the striated muscle fibre. J. cell. comp. Physiol., 34, 397–405

    Article  Google Scholar 

  • Mullins, J. J. (1979). The generation of electric currents in cardiac fibres by Na/Ca exchange. Am. J. Physiol., 263, C103–10

    Google Scholar 

  • Penefsky, Z. J. and Hoffman, B. F. (1963). Effects of stretch on mechanical and electrical properties of cardiac muscle. Am. J. Physiol., 204, 433–8

    Google Scholar 

  • Pirzada, F. A., Ekong, E. A., Vokonas, P. S., Anstein, C. A. and Hood, W. B. (1976). Experimental infarction. XIII. Sequential changes in left ventricular pressure-length relationships in the acute phase. Circulation, 53, 970–5

    Article  Google Scholar 

  • Pollack, G. H. (1977). Cardiac pacemaking: an obligatory role of catecholamines. Science, N.Y., 196, 731–8

    Article  Google Scholar 

  • Reuter, H. (1979). Properties of two inward membrane currents in the heart. A. Rev. Physiol., 41, 413–24

    Article  Google Scholar 

  • Reuter, H. and Scholz, H. (1977). The regulation of the calcium conductance of cardiac muscle by adrenaline. J. Physiol., Lond., 264, 49–62

    Article  Google Scholar 

  • Schneider, J. A. and Sperelakis, N. (1975). Slow Ca2+ and Na+ responses induced by isoproterenol and methylxanthines in isolated perfused guinea-pig hearts exposed to elevated K+. J. molec. cell. Cardiol., 7, 249–73

    Article  Google Scholar 

  • Takeuchi, A. and Takeuchi, V. (1960). On the permeability of the end plate membrane during the action of transmitter. J. Physiol., Lond., 154, 52–7

    Article  Google Scholar 

  • Tennant, R. and Wiggers, D. J. (1935). The effect of coronary occlusion on myocardial contraction. Am. J. Physiol., 112, 351–61

    Google Scholar 

  • Tsien, R. W. (1977). Cyclic AMP and contractive activity in the heart. Adv. cyclic Nucleotide Res., 8, 363–420

    Google Scholar 

  • Weidmann, S. (1956). Shortening of the cardiac action potential due to a brief injection of KCl following the onset of contractility. J. Physiol., Lond., 132, 157–63

    Article  Google Scholar 

  • Zoll, P. M., Belgard, A. H., Weintraum, J. J. and Frank, H. A. (1976). External mechanical cardiac stimulation. New Engl. J. Med., 294, 1274–5

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1982 The contributors

About this chapter

Cite this chapter

Lab, M.J. (1982). Stress-strain-related Depolarisation in the Myocardium and Arrhythmogenesis in Early Ischaemia. In: Parratt, J.R. (eds) Early Arrhythmias Resulting from Myocardial Ischaemia. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-06260-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-06260-7_5

  • Publisher Name: Palgrave Macmillan, London

  • Print ISBN: 978-1-349-06262-1

  • Online ISBN: 978-1-349-06260-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics