Myocardial α-Adrenoceptors and Arrhythmias Induced by Myocardial Ischaemia

  • Desmond J. Sheridan


Although myocardial ischaemia is by far the most frequent cause of ventricular fibrillation, the precise mechanisms which immediately induce this arrhythmia are unclear. Complete coronary occlusion is frequently absent in victims of sudden death (Basche et al., 1975) and experimental studies indicate that both coronary occlusion and reperfusion are associated with ventricular fibrillation (Penkoske et al., 1978). The picture is further complicated by the fact that clinical and experimental arrhythmias are both most intense soon after the onset of myocardial ischaemia, at a time when several pathophysiological processes are occurring simultaneously. Many studies have been carried out in an attempt to distinguish which of these are arrhythmogenic. The present chapter is concerned with the possibility that α-adrenoceptor activity may contribute to the development of ventricular fibrillation during myocardial ischaemia. Interest in this possibility arose out of studies with the α-blocking drug phentolamine, which was found to prevent ventricular arrhythmias induced by a variety of techniques. Thus Leimdorfer (1953) reported that intravenous administration of phentolamine prevented arrhythmias due to nicotine or adrenaline and converted methacholine-induced atrial fibrillation in dogs. Others (Vargaftig and Coignet, 1969) reported that phentolamine prevented arrhythmias induced by aconitine or by inhalation of chloroform.


Myocardial Ischaemia Ventricular Fibrillation Coronary Occlusion Positive Inotropic Effect Antiarrhythmic Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Basche, W. J., Baba, N., Keller, M. D., Geer, J. C. and Anthony, J. R. (1975). Pathology of atherosclerotic heart disease in sudden death. II. The significance of myocardial infarction. Circulation, 52, Suppl. III, 63–9Google Scholar
  2. Benfey, B. G. and Greeff, K. (1961). Interactions of sympathomimetic drugs and their antagonists on the isolated atrium. Br. J. Pharmac., 17, 232–5Google Scholar
  3. Brodde, O.-E., Motomura, S., Endoh, M. and Schumann, H. J. (1978). Lack of correlation between the positive inotropic effect evoked by α-adrenoreceptor stimulation and the levels of cyclic AMP and/or cyclic GMP in the isolated ventricle striae of the rabbit. J. molec. cell. Cardiol., 10, 207–19CrossRefGoogle Scholar
  4. Di Micco, J. A., Prestel, T., Pearle, D. L. and Gillis, R. A. (1977). Mechanisms of cardiovascular changes produced in cats by activation of the central nervous system with picrotoxin. Circulation Res., 41, 446–51CrossRefGoogle Scholar
  5. Ebert, P. A., Vanderbeck, R. B., Allgood, R. J. and Sabiston, D. C. (1970). Effect of chronic cardiac denervation on arrhythmias after coronary artery ligation. Cardiovasc. Res., 4, 141–7CrossRefGoogle Scholar
  6. Ettinger, S., Gould, L., Carmichael, J. A. and Tashjian, R. J. (1969). Phentolamine: use in digitalis-induced arrhythmias. Am. Heart J., 77, 636–40CrossRefGoogle Scholar
  7. Gauduel, Y., Karagueuzian, H. S. and De Leiris, J. (1979). Deleterious effects of endogenous catecholamines on hypoxic myocardial cells following reoyxgenation. J. molec. cell. Cardiol., 11, 717–31CrossRefGoogle Scholar
  8. Gazes, P. C., Richardson, J. A. and Woods, E. F. (1959). Plasma catecholamine concentrations in myocardial infarction and angina pectoris. Circulation, 19, 657–61CrossRefGoogle Scholar
  9. Giotti, A., Ledda, F. and Mannaioni, P. F. (1973). Effects of noradrenaline and isoprenaline, in combination with α and β receptor blocking substances, on the action potential of cardiac Purkinje fibres. J. Physiol., Lond., 229, 99–113CrossRefGoogle Scholar
  10. Gould, L., Zahir, M., Sharriff, M. and Giuliani, M. G. (1969). Treatment of cardiac arrhythmias with phentolamine. Am. Heart J., 78, 189–93CrossRefGoogle Scholar
  11. Gould, L., Gomprecht, R. F. and Zahir, M. (1971). Oral phentolamine for treatment of ventricular premature contractions. Br. Heart J., 33, 101–4CrossRefGoogle Scholar
  12. Gould, L., Reddy, C. V. R., Weinstein, T. and Gomprecht, R. F. (1975). Antiarrhythmic prophylaxis with phentolamine in acute myocardial infarction. J. clin. Pharmac., 15, 191–7CrossRefGoogle Scholar
  13. Govier, W. C. (1968). Myocardial alpha adrenergic receptors and their role in the production of a positive inotropic effect by sympathomimetic agents. J. Pharmac. exp. Ther., 159, 82–90Google Scholar
  14. Govier, W. C., Mosel, N. C., Whittington, P. and Broom, A. H. (1966). Myocardial alpha and beta adrenergic receptors as demonstrated by atrial functional refractory period changes. J. Pharmac. exp. Ther., 154, 255–63Google Scholar
  15. Hirche, Hj., Franz, C., Bos, L., Bissig, R., Lang, R. and Schramm, M. (1980). Myocardial extracellular K+ and H+ increase and noradrenaline release as a possible cause of early arrhythmias following acute coronary occlusion in pigs. J. molec. cell. Cardiol., 12, 579–93CrossRefGoogle Scholar
  16. Leimdorfer, A. (1953). Abolition of cardiac arrhythmias by regitine (parasympatholytic effects of regitine). Archs int. Pharmacodyn. Thér., 94, 119 and 249Google Scholar
  17. Maling, H. M., Cohn, V. H. and Highman, B. (1959). The effects of coronary occlusion in dogs treated with reserpine and in dogs treated with phenoxybenzamine. J. Pharmac. exp. Ther., 127, 229–35Google Scholar
  18. Mary-Rabine, L., Hordef, A. J., Bowman, F. O., Malm, J. R. and Rosen, M. R. (1978). Alpha and beta adrenergic effects on human atrial specialized conducting fibers. Circulation, 57, 84–90CrossRefGoogle Scholar
  19. Mathes, P. and Gudbjarnason, S. (1971). Changes in norepinephrine stores in the canine heart following experimental myocardial infarction. Am. Heart J., 81, 211–9CrossRefGoogle Scholar
  20. Melville, K. I. and Varma, D. R. (1962). The combined effects of reserpine and various coronary dilator drugs: an experimental study. Can. med. Assoc. J., 86, 1014–9Google Scholar
  21. Miura, Y., Inui, J. and Imamura, H. (1978). Alpha-adrenoreceptor mediated restoration of calcium-dependent potential in the partially depolarised rabbit papillary muscle. Naunyn Schmiedebergs Arch. Pharmac., 301, 201–5CrossRefGoogle Scholar
  22. Moore, G. and Parratt, J. R. (1973). Effects of noradrenaline and isoprenaline on blood flow in the ischaemic myocardium. Cardiovasc. Res., 7, 446–57CrossRefGoogle Scholar
  23. Naito, M., Michelson, E. L., Kmetzo, J. J., Kaplinsky, E. and Dreifus, L. S. (1981). Failure of antiarrhythmic drugs to prevent experimental reperfusion ventricular fibrillation. Circulation, 63, 70–9CrossRefGoogle Scholar
  24. Nakashima, M., Tsuru, H. and Shigei, T. (1973). Stimulant action of methoxamine in the isolated atria of normal and 6-propyl-2-thiouracil fed rats. Jap. J. Pharmac., 23, 307–12CrossRefGoogle Scholar
  25. Nazum, F. R. and Bischoff, F. (1953). The urinary output of catechol derivates including adrenaline in normal individuals in essential hypertension and in myocardial infarction. Circulation, 7, 96–101CrossRefGoogle Scholar
  26. Pappano, A. J. (1971). Propranolol-insensitive effects of epinephrine on action potential repolarisation in electrically driven atria of the guinea pig. J. Pharmac. exp. Ther., 177, 85–95Google Scholar
  27. Penkoske, P. A., Sobel, B. E. and Corr, P. B. (1978). Disparate electrophysiological alterations accompanying dysrhythmia due to coronary occlusion and reperfusion in the cat. Circulation, 58, 1023–35CrossRefGoogle Scholar
  28. Rabinowitz, B., Chuck, L., Kligerman, M. and Parmley, W. W. (1975). Positive inotropic effects of methoxamine: evidence for alpha-adrenergic receptors in ventricular myocardium. Am. J. Physiol., 229, 582–5Google Scholar
  29. Rosen, M. R., Gelband, H. and Hoffman, B. F. (1971). Effects of phentolamine on electrophysiologic properties of isolated canine Purkinje fibers. J. Pharmac. exp. Ther., 179, 586–93Google Scholar
  30. Rosen, M. R., Hordof, A. J., Ilvento, J. P. and Danilo, P. (1977). Effects of adrenergic amines on electrophysiologic properties and automaticity of neonatal and adult canine Purkinje fibres. Circulation Res., 40, 390–400CrossRefGoogle Scholar
  31. Schumann, H. J., Endoh, M. and Brodde, O.-E. (1975). Positive inotropic effects of phenylephrine in isolated rabbit papillary muscle mediated both by α and β adrenoreceptors. Naunyn Schmiedebergs Arch. Pharmac., 284, 133–48CrossRefGoogle Scholar
  32. Sethi, V., Haider, B., Ahmed, S., Oldewurtel, H. A. and Regan, T. J. (1973). Influence of β blockade and chemical sympathectomy on myocardial function and arrhythmias in acute ischaemia. Cardiovasc. Res., 7, 740–7CrossRefGoogle Scholar
  33. Sharma, V. K. and Banerjee, S. P. (1978). Alpha adrenergic receptor in rat heart. Effects of thyroidectomy. J. biol. Chem., 235, 5277–9Google Scholar
  34. Shayman, J. A., Kramer, J. B. and Corr, P. B. (1980). Increased α-adrenergic receptors in ischaemic myocardium. Circulation, 62, Suppl. III, 149 (abstract)CrossRefGoogle Scholar
  35. Sheridan, D. J., Penkoske, P. A., Sobel, B. E. and Corr, P. B. (1980). Alpha adrenergic contributions to dysrhythmia during myocardial ischaemia and reperfusion in cats. J. clin. Invest., 65, 161–71CrossRefGoogle Scholar
  36. Sommers, H. M. and Jennings, R. B. (1972). Ventricular fibrillation and myocardial necrosis after transient ischaemia: effect of treatment with oxygen, procainamide, reserpine and propranolol. Archs int. Med., 129, 780–9CrossRefGoogle Scholar
  37. Staszewska-Barczak, J. and Ceremuzynski, L. (1971). The reflex stimulation of catecholamine secretion during the acute stage of myocardial infarction in the dog. Clin. Sci., 41, 419–39CrossRefGoogle Scholar
  38. Stewart, J. R., Burmeister, W. E., Burmeister, J. and Lucchesi, B. R. (1980). Electrophysiologic and antiarrhythmic effects of phentolamine in experimental coronary occlusion and reperfusion in the dog. J. cardiovasc. Pharmac., 2, 77–91CrossRefGoogle Scholar
  39. Vargaftig, B. and Coignet, J. L. (1969). A critical evaluation of three methods for the study of adrenergic beta-blocking and antiarrhythmic agents. Eur. J. Pharmac., 6, 49–55CrossRefGoogle Scholar
  40. Wagner, J. and Brodde, O.-E. (1978). On the presence and distribution of α adrenoceptors in the heart of various mammalian species. Naunyn Schmiedebergs Arch. Pharmac., 302, 239–54CrossRefGoogle Scholar
  41. Wagner, J. and Reinhardt, D. (1974). Characterisation of the adrenoceptors mediating the positive ino- and chronotropic effect of phenylephrine on isolated atria from guinea pigs and rabbits by means of adrenolytic drugs. Naunyn Schmiedebergs. Arch. Pharmac., 282, 295–306CrossRefGoogle Scholar
  42. Wagner, J., Endoh, M. and Reinhardt, D. (1974). Stimulation by phenylephrine of adrenergic alpha and beta-receptors in the isolated perfused rabbit heart. Naunyn Schmiedebergs Arch. Pharmac., 282, 307–10CrossRefGoogle Scholar
  43. Watanabe, A. M., Besch, H. R., Hathaway, D. R., Harris, R. A. and Farmer, B. B. (1978). Alpha-adrenergic reduction of cyclic adenosine monophosphate levels in rat ventricular myocardial cells. In Recent Advances in Studies on Cardiac Structure and Metabolism, Vol. 11 (ed. T. Kobayashi, T. Sano, and N. S. Dhalla), University Park Press, Baltimore, pp. 431–6Google Scholar
  44. Wenzel, D. G. and Su, J. L. (1971). Interaction between sympathomimetic amines and blocking agents on the rat ventricle strip. Archs int. Pharmacodyn. Thér., 160, 379–89Google Scholar
  45. Williams, L. T., Lefkowitz, R. J., Watanabe, A. M., Hathaway, D. R. and Besch, H. R. (1977). Thyroid hormone regulation of α-adrenergic receptor numbers. J. biol. Chem., 252, 2787–9Google Scholar
  46. Wollenberger, A. and Shahab, L. (1965). Anoxia-induced release of noradrenaline from the isolated perfused heart. Nature, Lond., 207, 88–9CrossRefGoogle Scholar

Copyright information

© The contributors 1982

Authors and Affiliations

  • Desmond J. Sheridan

There are no affiliations available

Personalised recommendations