Skip to main content

Coexistence of neurotransmitter substances in a specifically defined invertebrate neurone

  • Chapter
Co-Transmission

Abstract

Whether some neurones utilise more than one neurotransmitter is a question which has attracted considerable attention in the past ten years (see Burnstock, 1976, 1978; Osborne, 1979, 1981). This interest was sparked off by biochemical studies on isolated invertebrate neurones (Brownstein et al., 1974; Hanley et al., 1974; Osborne, 1977), and also through the development of specific immunohistochemical procedures to visualise transmitter-specific neurones (Chan-Palay et al., 1978; Hökfelt et al., 1977a,b, 1980 see also, chapters 1 and 4). Before this era it was generally accepted that each neurone had the ability to synthesise, store and release only one transmitter substance. This belief, widely known as Dale’s principle, was based on a vast quantity of experimental data but was consistently questioned due to the lack of conclusive proof, for example, the cholingergic link in adrenergic transmission (Burn and Rand, 1965; Koelle, 1962).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brodie, B. B. and Shore, P. A. (1957). A concept for a role of Serotonin and norepinephrine as chemical mediators in the brain. Ann. N.Y. Acad. Sci., 66, 631–42

    Article  Google Scholar 

  • Brownstein, M. J., Saavedra, J. M., Axelrod, J., Zeman, G. H. and Carpenter, D. O. (1974). Coexistence of several putative neurotransmitters in single identified neurons of Aplysia. Proc. natn. Acad. Sci. U.S.A., 7, 4662–5

    Article  Google Scholar 

  • Burn, J. H. and Rand, M. J. (1965). Acetylcholine in adrenergic transmission. A. Rev. Pharmac., 5, 163–82

    Article  Google Scholar 

  • Burnstock, G. (1976). Do some nerve cells release more than one transmitter? Neuroscience, 1, 239–48

    Article  Google Scholar 

  • Burnstock, G. (1970). Do some sympathetic neurones synthesise and release both noradrenaline and acetylcholine? Progr. Neurobiol., 11, 205–22

    Article  Google Scholar 

  • Chan-Palay, V., Jonsson, G. and Palay, S. L. (1978). Serotonin and substance-P coexist in neurons of the rat’s central nervous system. Proc. natn. Acad. Sci. U.S.A., 75, 1582–6

    Article  Google Scholar 

  • Consolazione, A., Milstein, C., Wright, B. and Cuello, A. C. (1981). The immunohistochemical detection of serotonin with monoclonal antibodies. J. Histochem. Cytochem., in the press

    Google Scholar 

  • Cottrell, G. A. (1970). Direct postsynaptic responses to stimulation of serotonin-containing neurons. Nature, 225, 1060–2

    Article  Google Scholar 

  • Cottrell, G. A. (1971). Synaptic connections made by two serotonin-containing neurons in the snail (Helix pomatia) brain. Experientia, 27, 813–5

    Article  Google Scholar 

  • Cottrell, G. A. (1976). Does the giant cerebral neurone of Helix release two transmitters, acetylcholine and serotonin. J. Physiol. Lond., 259, 44–5P

    Google Scholar 

  • Cottrell, G. A. (1977). Identified amine-containing neurones and their synaptic connexions. Neuroscience, 2, 1–18

    Article  Google Scholar 

  • Cottrell, G. A. and Macon, J. B. (1974). Synaptic connections of two symmetrically placed giant serotonin-containing neurones. J. Physiol. Lond., 236, 434–64

    Article  Google Scholar 

  • Cottrell, G. A. and Osborne, N. N. (1970). Subcellular localisation of serotonin in an identified serotonin-containing neuron. Nature, 225, 470–2

    Article  Google Scholar 

  • Cottrell, G. A. and Powell, B. (1971). Formation of serotonin by isolated serotonin-containing neurons and by isolated monoamine-containing neurons. J. Neurochem., 18, 1695–997

    Article  Google Scholar 

  • Cottrell, G. A., Berry, M. S. and Macon, J. B. (1974). Synapses of a giant serotonin neuron and a giant dopamine neuron: Studies using antagonists Neuropharmacology, 13, 431–39

    Article  Google Scholar 

  • Cuello, A. C., Galfre, G. and Milstein, C. (1979). Detection of substance P in the central nervous system by a monoclonal antibody Proc. natn. Acad. Sci. U.S.A., 76, 3532–6

    Article  Google Scholar 

  • Dockray, G. J. (1979). Evolutionary relationships of the gut hormones. Fedn. Proc., 38, 2295–301

    Google Scholar 

  • Dockray, G. J., Gregory, R. A., Hutchinson, J. B., Harris, J. I. and Runswick, M. J. (1978). Isolation, structure and biological activity of two cholecystokinin octopeptides from sheep brain. Nature, 274, 711–3

    Article  Google Scholar 

  • Dockray, G. J., Vaillant, C., and Hutchison, J. B. (1981). Immunochemical characterisation of peptides in endocrine cells and nerves with particular reference to gastrin and cholecystokinin. In The Cellular Basis of Chemical Messengers in the Digestive System, (ed. M. I. Grossman, M. A. B. Brazier and J. Lechago), Academic Press, New York, in the press

    Google Scholar 

  • Dodd, P. R., Edwardson, J. A. and Dockray, G. J. (1980). The depolarization induced release of cholecystokinin C-terminal octapeptide (CCK-8) from rat synaptosomes and brain slices. Regulatory Peptides, 1, 17–29

    Article  Google Scholar 

  • Emson, P. C. and Fonnum, F. (1972). Choline acetyltransferase, acetylcholinesterase and aromatic-L-amino acid decarboxylase in single identified nerve cell bodies from snail Helix aspersa. J. Neurochem., 22, 1079, 1088

    Google Scholar 

  • Falck, B. and Owman, Ch. (1965). A detailed methodological description of the fluoresence method for the cellular demonstration of biogenic monoamines. Acta Univ. Lund., 11 (7), 1, 23

    Google Scholar 

  • Gerschenfeld, H. M. (1973). Chemical transmission in invertebrate central nervous systems and neuromuscular junctions. Physiol. Rev., 53, 1–119

    Google Scholar 

  • Gerschenfeld, H. M. and Paupardin-Tritsch, D. (1974). On the transmitter functions of 5-hydroxyhyptamine at excitatory and inhibitory monosynaptic junctions. J. Physiol. Lond., 243, 457–81

    Article  Google Scholar 

  • Gershenfeld, H. M., Hamon, M. and Paupardin-Tritisch, D. (1978). Release of endogenous serotonin from two identified serotonin-containing neurones and the physiological role of serotonin uptake. J. Physiol. Lond., 274, 265–78

    Article  Google Scholar 

  • Goldberg, D. J., Goldman, J. E. and Schwartz, J. H. (1976). Alterations in amounts and rates of serotonin transported in an axon of the giant cerebral neurone of Aplysia californica. J Physiol. Lond., 259, 473–90

    Article  Google Scholar 

  • Goldman, J. E. and Schwartz, J. H. (1974). Cellular specificity of serotonin storage and axonal transport in identified neurons of Aplysia californica. J. Physiol. Lond., 242, 61–76

    Article  Google Scholar 

  • Hanley, M. R. and Cottrell, G. A. (1974). Acetylcholine activity in an identified 5-hydroxytryptamine-containing neurone. J. Pharm. Pharmac., 26, 980

    Article  Google Scholar 

  • Hanley, M. R., Cottrell, G. A., Emson, P. C. and Fonnum, F. (1974). Enzymatic synthesis of acetylcholine by a serotonin-containing neurone from Helix. Nature New Biol., 251, 631–3

    Article  Google Scholar 

  • Hökfelt, T., Elfvin, L-C., Schultzberg, M., Goldstein, M. and Nilsson, G. (1977a). On the occurrence of substance P-containing fibres in sympathetic ganglia: immunohistochemical evidence. Brain Res., 132, 29–41

    Article  Google Scholar 

  • Hökfelt, T., Elfvin, L-G., Elde, R., Schultzberg, M., Goldstein, M. and Lufe, R. (1977b). Occurrence of somatostatin-like immunoreactivity in some peripheral sympathetic noradrenergic neurons. Proc. natn. Acad. Sci. U.S.A., 74, 3587–91

    Article  Google Scholar 

  • Hökfelt, T., Lundberg, J. M., Schultzberg, M., Johansson, O., Ljumdahl, A. and Rehfeld, J. (1980). Coexistence of peptides and putative transmitters in neurons. In Neural Peptide and Neuronal Communication (ed. E. Costa and M. Trabuchi), Raven Press, New York, pp. 1–23

    Google Scholar 

  • Innis, R. B. and Snyder, S. H. (1980). Cholecystokinin receptor binding in brain and pancreas regulation of pancreatic binding by cyclic and acyclic quanine nucleopeptides. Eur. J. Pharmac., 65, 123–4

    Article  Google Scholar 

  • Kandel, E. R. and Tauc, L. (1966). Input organization of two symmetrical giant cells in the snail brain. J. Physiol. Lond., 183, 269–86

    Article  Google Scholar 

  • Katz, B. and Miledi, R. (1967). A study of synaptic transmission in the absence of impulses. J. Physiol. Lond., 192, 407–36

    Article  Google Scholar 

  • Koelle, G. B. (1962). A new general concept of the neurohumoral functions of acetylcholine and acetylcholinesterase. J. Pharm. Pharmac., 14, 65–90

    Article  Google Scholar 

  • Koe, B. K. and Weissman, A. (1966). p-Chlorophenylalanine, a specific depletor of brain serotonin. J. Pharm. exp. Therap., 154, 499–516

    Google Scholar 

  • Kunze, H. (1921). Zur Topographie und Histologie des Zentral-nerven-systems von Helix pomatia. Z. Wiss. Zool., 118, 25–203

    Google Scholar 

  • Larsson, L.-L. and Rehfeld, J. F. (1979). Localization and molecular heterogeneity of cholecystokinin in central and peripheral nervous systems. Brain Res., 165, 201–18

    Article  Google Scholar 

  • Osborne, N. N. (1972). The in vivo synthesis of serotonin in an identified serotonincontaining neuron of Helix pomatia. Int. J. Neurosci., 3, 215–19

    Article  Google Scholar 

  • Osborne, N. N. (1973a). Micro-biochemical and physiological studies on an identified serotonergic neuron in the snail Helix pomatia. Malacologia, 14, 97–106

    Google Scholar 

  • Osborne, N. N. (1973b). Tryptophan metabolism in characterised neurons of Helix. Br. J. Pharmac., 48, 546–9

    Article  Google Scholar 

  • Osborne, N. N. (1974). Microchemical Analysis of Nervous Tissues, Pergamon Press, Oxford and New York

    Google Scholar 

  • Osborne, N. N. (1977). Do snail neurones contain more than one transmitter? Nature, 270, 622–3

    Article  Google Scholar 

  • Osborne, N. N. (1978). The neurobiology of a serotonergic neuron. In Biochemistry of Characterised Neurones (ed. N. N. Osborne), pp. 47–80

    Chapter  Google Scholar 

  • Osborne, N. N. (1979). Is Dale’s principle valid? Trends Neurosci., 2, 73–5

    Article  Google Scholar 

  • Osborne, N. N. (1980). Reasons for using the snail brain in pharmacological research. Trends Pharmac., 1, 290–2

    Article  Google Scholar 

  • Osborne, N. N. (1981). Communication between neurones: current concepts. Neurochem. Int., 3, 3–16

    Article  Google Scholar 

  • Osborne, N. N. (1982). Biology of Serotonergic Transmission, Wiley, Chichester, in the press

    Google Scholar 

  • Osborne, N. N. and Cottrell, G. A. (1971a). Distribution of biogenic amines in the slug Limax maximum. Z. Zellforsch., 112, 15–30

    Article  Google Scholar 

  • Osborne, N. N. and Cottrell, G. A. (1971b). Amine and amino acid microanalysis of two identified snail neurones with known characteristics. Experientia, 27, 656–8

    Article  Google Scholar 

  • Osborne, N. N. and Neuhoff, V. (1980). Identified serotonergic neurones. In International Review of Cytology, 67 (ed. G. H. Bourne and J. F. Danielli), Academic Press, New York, pp. 259–290

    Google Scholar 

  • Osborne, N. N., Cuello, A. C. and Dockray, G. J. (1981). The localization of substance P and cholecystokinin-like peptides in specific neurones of the snail Helix and the coexistence of cholecystokinin and substance P in a defined giant neurone (GSC). Science, in the press

    Google Scholar 

  • Pentreath, V. W. (1976). Ultrastructure of the terminals of an identified 5-hydroxytryptamine-containing neurone marked by intracellular injection of radioactive 5-hydroxytryptamine. J. Neurocytol., 5, 43–61

    Article  Google Scholar 

  • Pentreath, V. W. and Cottrell, G. A. (1973). Uptake of serotonin, 5-hydroxytryptophan and tryptophan by giant serotonin-containing neurones and other neurones in the central nervous system of the snail (Helix pomatia). Z. Zellforsch., 143, 21–35

    Article  Google Scholar 

  • Pentreath, V. W., Osborne, N. N. and Cottrell, G. A. (1973). Anatomy of giant serotonin-containing neurones in the cerebral ganglia of Helix pomatia, and Limax maximus Z. Zellforsch., 143, 1–20

    Article  Google Scholar 

  • Pentreath, V. W., Berry, M. S. and Osborne, N. N. (1982). The serotonergic cerebral cells in gastropods. In Biology of Serotonergic Transmission (ed. N. N. Osborne), Wiley, Chichester, in the press

    Google Scholar 

  • Pearse, A. G. E. (1976). Peptides in brain and intestine. Nature, 262, 92–3

    Article  Google Scholar 

  • Price, D. A. and Greenberg, M. J. (1977). Structure of a molluscan cardioexcitatory neuropeptide. Science, 197, 670–1

    Article  Google Scholar 

  • Rapport, M. M. (1949). Serum vasoconstrictor (serotonin) V. presence of creatinine in the complex. A proposed structure of the vasoconstrictor principle. J. biol. Chem., 180, 961–69

    Google Scholar 

  • Schwartz, J. H. (1979). Axonal transport: components, mechanism and specificity. A. Rev. Neurosci., 2, 467–504

    Article  Google Scholar 

  • Tauc, L., Hoffman, A., Tsuji, S., Hinzen, D. H. and Faille, L. (1974). Transmission abolished at a cholinergic synapse after injection of cholinesterase into the presynaptic neurone. Nature, 250, 496–98

    Article  Google Scholar 

  • Vanderhaeghen, J. J., Lotsfra, F., de Mey, J. & Giles, C. (1980). Immunohistochemical localization of cholecystokinin and gastrin-like peptides in brain and hypophysis of the rat. Proc. natn. Acad. Sci. U.S.A., 77, 1190–4

    Article  Google Scholar 

  • Weinreich, D., McCaman, W., McCaman, R. E. & Vaughn, J. E. (1973). Chemical enzymatic and ultra-structural characterisation of 5 -hydroxytryptamine-containing neurons from the ganglion of Aplysia californica and Tritonia diomedia. J. Neurochem., 20, 969–76

    Article  Google Scholar 

  • Wood, J. G. (1965). Electron microscopic localisation of 5-hydroxytryptamine (5-HT). Tex. Rep. biol. Med., 23, 828–37

    Google Scholar 

  • Wood, J. G. (1966). Electron microscopic localisation of amines in central nervous tissue. Nature, 209, 1131–3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1982 The Contributors

About this chapter

Cite this chapter

Osborne, N.N. (1982). Coexistence of neurotransmitter substances in a specifically defined invertebrate neurone. In: Cuello, A.C. (eds) Co-Transmission. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-06239-3_9

Download citation

Publish with us

Policies and ethics