Skip to main content

Coexistence of monoamines in peripheral adrenergic neurones

  • Chapter

Abstract

The suggestion that we made in 1968 that noradrenaline and serotonin (5-hydroxytryptamine) were not only present in the same sympathetic fibres innervating the pineal gland of the rat but might also coexist in their storage vesicles (Jaim-Etcheverry and Zieher, 1968b), was received with skepticism and regarded as a curiosity of nature. However, since then the possibility of the coexistence of putative transmitters in neurones has been more seriously considered and experimental evidence supporting that mechanism accumulated over the years. Such data, in addition to its theoretical implications, have been the subject of several review articles and commentaries (Burnstock, 1976, 1978; Osborne, 1979, 1981; Dismukes, 1979). Nowadays, mainly due to the explosive growth of our knowledge about the localisation of various peptides both in the CNS and in the periphery, the coexistence in neurones of several molecules active in cellular communication, is considered to represent an important mechanism in the regulation of that process (Hökfelt et al., 1980a and b). The articles gathered in this volume bear witness to the profound changes that took place in the ideas that prevailed not long ago.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arïëns Kappers, J. (1960). The development, topographical relations and innervation of the epiphysis cerebri in the albino rat. Z. Zellforsch., 52, 163–215

    Article  Google Scholar 

  • Axelrod, J. (1974). The pineal gland: a neurochemical transducer. Science, 184, 699–714

    Article  Google Scholar 

  • Barrett, R. E. and Balch, T. St. (1971). Uptake of catecholamines into serotonergic nerve cells as demonstrated by fluorescence histochemistry. Experientia, 27, 633–4

    Article  Google Scholar 

  • Bertler, A. B., Falck, B. and Owman, C. (1964). Studies on 5-hydroxytryptamine stores in pineal gland of the rat. Acta physiol. Scand., 63, Suppl., 239

    Google Scholar 

  • Bloom, F. E. (1974). Dynamics of synaptic modulation: perspectives for the future. In The Neurosciences: Third Study Program, (ed. F. O. Schmitt and F. G. Worden), MIT Press, Cambridge, Mass achusetts, p. 989

    Google Scholar 

  • Brownstein, M. (1975). The pineal gland. Life Sci., 16, 1363–74

    Article  Google Scholar 

  • Burnstock, G. (1976). Do some nerve cells release more than one transmitter? Neuroscience, 1, 239–48

    Article  Google Scholar 

  • Burnstock, G. (1978). Do some sympathetic neurones synthesize and release both noradrenaline and acetylcholine? Progr. Neurobiol., 11, 205–22

    Article  Google Scholar 

  • Cuello, A. C. and Iversen, L. L. (1978). Interactions of dopamine with other neurotransmitters in the rat substantiz nigra. A possible functional role for dendritic dopamine. In Interactions between Putative Transmitters in the Brain, (ed. S. Garattini, J. F. Pujol and R. Samamin), Raven Press, New York, pp. 127–49

    Google Scholar 

  • Deguchi, T. and Barchas, J. (1972). Effect of p-chlorophenylalanine on hydroxylation of tryptohpan in pineal and brain of rats. Molec. Pharmac., 8, 770–9

    Google Scholar 

  • Dismukes, R. K. (1979). New concepts of molecular communication among neurons. Behav. Brain Sci., 2, 409–48

    Article  Google Scholar 

  • Eccleston, D., Thoa, N. B. and Axelrod, J. (1968). Inhibition by drugs of the accumulation in vitro of 5-hydroxytryptamine in guinea pig vas deferens. Nature Lond., 217, 846–7

    Article  Google Scholar 

  • Fuller, R. W. and Perry, K. W. (1977). Increase of pineal noradrenaline concentration in rats by desipramine but not fluoxetine: implications concerning the specificity of these uptake inhibitors. J. Pharm. Pharmac., 29, 710–11

    Article  Google Scholar 

  • Goldsmith, P. C. (1977). Ultrastructural localization of some hypothalamic hormones. Fedn. Proc., 36, 1968–72

    Google Scholar 

  • Grillo, M. A. (1966). Electron microscopy of sympathetic tissues. Pharmac. Rev., 19, 387–99

    Google Scholar 

  • Hökfelt, T. (1968). In vitro studies on central and peripheral monamine neurons at the ultrastructural level. Z. Zellforsch., 91, 1–74

    Article  Google Scholar 

  • Hökfelt, T., Elfvin, L. G., Elde, R., Schiltzberg, M., Goldstein, M. and Luft, R. (1977). Occurrence of somatostatin-like immunoreactivity in some peripheral sympathetic noradrenergic neurons. Proc. natn. Acad. Sci. U.S.A., 74, 3597–91

    Article  Google Scholar 

  • Hökfelt, T., Johansson, O., Ljungdahl, A., Lundberg, J. M. and Schultzberg, M. (1980a). Peptidergic neurones. Nature Lond., 284, 515–21

    Article  Google Scholar 

  • Hökfelt, T., Lundberg, J. M., Schultzberg, M., Johansson, O., Ljungdahl, A. and Rehfeld, J. (1980b). Coexistence of peptides and putative transmitters in neurons. In Neural Peptides and Neuronal Communication (ed. E. Costa and M. Trabucchi), Raven Press, New York, p. 1

    Google Scholar 

  • Jaim-Etcheverry, G. and Zieher, L. M. (1968a). Cytochemistry of 5-hydroxytryptamine at the electron microscope level. Study of the specificity of the reaction in isolated blood platelets. J. Histochem. Cytochem., 16, 162–71

    Article  Google Scholar 

  • Jaim-Etcheverry, G. and Zieher, L. M. (1968b). Cytochemistry of 5-hydroxytryptamine at the electron microscope level. II. Localization in the autonomic nerves of rat pineal gland. Z. Zellforsch., 86, 393–400

    Article  Google Scholar 

  • Jaim-Etcheverry, G. and Zieher, L. M. (1968c). Electron microscopic cytochemistry of 5-hydroxytryptamine (5-HT) in the beta cells of guinea pig endocrine pancreas. Endocrinol, 83, 917–23

    Article  Google Scholar 

  • Jaim-Etcheverry, G. and Zieher, L. M. (1968d). Cytochemical localization of monoamine stores in sheep thyroid gland at the electron microscope level. Experientia, 24, 593–5

    Article  Google Scholar 

  • Jaim-Etcheverry, G. and Zieher, L. M. (1969a). Ultrastructural cytochemistry and pharmacology of 5-hydroxytryptamine in adrenergic nerve endings. II. Localization of exogenous 5-hydroxytryptamine in the autonomic nerves of the rat vas deferens. J. Pharmac. exp. Ther., 166, 264–71

    Google Scholar 

  • Jaim-Etcheverry, G. and Zieher, L. M. (1969b). Selective demonstration of a type of synaptic vesicle by phosphotungstic acid staining. J. cell Biol. 42, 855–60

    Article  Google Scholar 

  • Jaim-Etcheverry, G. and Zieher, L. M. (1971a). Ultrastructural aspects of neurotransmitter storage in adrenergic nerves. Adv. Cytopharmac., 1, 343–61

    Google Scholar 

  • Jaim-Etcheverry, G. and Zieher, L. M. (1971b). Ultrastructural cytochemistry and pharmacology of 5-hydroxytryptamine in adrenergic nerve endings. III. Selective increase of norepinephrine in the rat pineal gland consecutive to depletion of neuronal 5-hydroxytryptamine. J. Pharmac. exp. Ther., 178, 42–8

    Google Scholar 

  • Jaim-Etcheverry, G. and Zieher, L. M. (1974). Localizing serotonin in central and peripheral nerves. In The Neurosciences: Third Study Program (ed. F. O. Schmitt and F. G. Worden), MIT Press, Cambridge, Massachusetts, p. 917

    Google Scholar 

  • Jaim-Etcheverry, G. and Zieher, L. M. (1975a). Octopamine probably coexists with noradrenaline and serotonin in vesicles of pineal adrenergic nerves. J. Neurochem., 25, 915–17

    Article  Google Scholar 

  • Jaim-Etcheverry, G. and Zieher, L. M. (1975b). Stimulation of beta-adrenergic receptors in the pineal gland increases the noradrenaline stores of its sympathetic nerves. Naunyn Schmied. Arch. Pharmac., 209, 425–31

    Article  Google Scholar 

  • Jaim-Etcheverry, G. and Zieher, L. M. (1980a). Stimulation-depletion of serotonin and noradrenaline from vesicles of sympathetic nerves in the pineal gland of the rat. Cell Tissue Res., 207, 13–20

    Article  Google Scholar 

  • Jaim-Etcheverry, G. and Zieher, L. M. (1980b). Stimulation depletes serotonin and noradrenaline from vesicles of pineal sympathetic nerves. Soc. Neurosci. Abstr., 6, 445

    Google Scholar 

  • Klein, D. J. (1974). Circadian rhythms in indole metabolism in the rat pineal gland. In The Neurosciences: Third Study Program (ed. F. O. Schmitt and F. G. Worden), MIT Press, Cambridge, Massachusetts, p. 509

    Google Scholar 

  • Lichtensteiger, W., Mutzner, U. and Langemann, H. (1967). Uptake of 5 hydroxytryptamine and 5 -hydroxytryptophan by neurons of the central nervous system normally containing catecholamines. J. Neurochem., 14, 489–97

    Article  Google Scholar 

  • Molinoff, P. B. and Axelrod, J. (1969). Octopamine: normal occurrence in sympathetic nerves of rats. Science, 164, 428–9

    Article  Google Scholar 

  • Molinoff, P. B. and Axelrod, J. (1972). Distribution and turnover of octopamine in tissues. J. Neurochem., 19, 157–63

    Article  Google Scholar 

  • Molinoff, P. B., Landsberg, L. and Axelrod, J. (1969). An enzymatic assay for octopamine and other beta-hydroxylated phenylethylamines. J. Pharmac. exp. Ther., 170, 253–61

    Google Scholar 

  • Neff, N. H., Barrett, R. E. and Costa, E. (1969). Kinetic and fluorescent histochemical analysis of the serotonin compartments in rat pineal gland. Eur. J. Pharmac. 5, 348–56

    Article  Google Scholar 

  • Osborne, N. N. (1979). Is Dale’s principle valid? Trends Neurosci., 2, 73–5

    Article  Google Scholar 

  • Osborne, N. N. (1981). Communication between neurones: current concepts. Neurochem. Internat., 3, 3–16

    Article  Google Scholar 

  • Owman, C. (1964). Sympathetic nerves probably storing two types of monoamines in the rat pineal gland. Int. J. Neuropharmac., 2, 105–12

    Article  Google Scholar 

  • Pearse, A. G. E. (1969). The cytochemistry and ultrastructure of polypeptide hormone producing cells of the APUD series and the embryologic, physiologic and pathologic impliçations of the concept. J. Histochem. Cytochem., 17, 303–13

    Article  Google Scholar 

  • Pellegrino de Iraldi, A. and De Robertis, E. (1961). Action of reserpine on the submicroscopic morphology of the pineal gland. Experientia, 17, 122–3

    Article  Google Scholar 

  • Pellegrino de Iraldi, A., Gueudet, R. and Suburo, A. M. (1971). Differentiation between 5-hydroxytryptamine and catecholamines in synaptic vesicles. Progr. Brain. Res., 34, 161–70

    Article  Google Scholar 

  • Pellergrino de Iraldi, A., Zieher, L. M. and De Robertis, E. (1963). 5-hydroxytryptamine content and synthesis of normal and denervated pineal gland. Life Sci., 1, 691–6

    Article  Google Scholar 

  • Pellegrino de Iraldi, A., Zieher, L. M. and De Robertis, E. (1965). Ultrastructural and pharmacological studies of nerve endings of the pineal gland. Progr. Brain Res., 10, 389–421

    Article  Google Scholar 

  • Rubio, M. C., Jaim-Etcheverry, G. and Zieher, L. M. (1977). Tyrosine hydroxylase activity increases in pineal sympathetic nerves after depletion of neuronal serotonin. Naunyn Schmied. Arch. Pharmac., 301, 75–8

    Article  Google Scholar 

  • Schultzberg, M., Hökfelt, T., Terenius, L., Elfvin, L. G., Lundberg, J. M., Brandt, J., Elde, R. P. and Goldstein, M. (1979). Enkephalin immunoreactive nerve fibres and cell bodies in sympathetic ganglia of the guinea-pig and rat. Neuroscience, 4, 249–70

    Article  Google Scholar 

  • Shaskan, E. G. and Snyder, S. H. (1970). Kinetics of serotonin accumulation into slices from rat brain: relationship to catecholamine uptake. J. Pharmac. exp. Ther., 175, 404–18

    Google Scholar 

  • Taxi, J. (1969). Morphological and cytochemical studies on the synapses in the autonomic nervous system. Progr. Brain Res., 31, 5–20

    Article  Google Scholar 

  • Taxi, J. and Droz, B. (1966). Etude de 1’incorporation de noradrenaline-3H (NA3H) et de 5-hydroxytryptophane-3H (5-HTP-3H) dans les fibres nerveuses du canal deferent et de l’intestin. C. r. Hebd. Seances Acad. Sci. Paris, 263, 1237–40

    Google Scholar 

  • Thoa, N. B., Eccleston, D. and Axelrod, J. (1969). The accumulation of C14-serotonin in the guinea-pig vas deferens. J. Pharmac. exp. Ther., 169, 68–73

    Google Scholar 

  • Uddman, R., Alumets, J., Håkanson, R., Lorén, I. and Sundler, F. (1980). Vasoactive intestinal peptide (VIP) occurs in the nerves of the pineal gland. Experientia, 36, 1119–20

    Article  Google Scholar 

  • Weiner, N. (1970). Regulation of norepineprine biosynthesis. A. Rev. Pharmac., 10, 273–90

    Article  Google Scholar 

  • Weiner, N., Cloutier, G., Bjur, R. and Pfeffer, R. I. (1972). Modification of norepinephrine synthesis in intact tissue by drugs and during short term adrenergic nerve stimulation. Pharmac. Rev., 24, 203–21

    Google Scholar 

  • Wood, J. G. (1967). Cytochemical localization of 5-hydroxytryptamine (5-HT) in the central nervous system (CNS). Anat. Rec., 157,343

    Article  Google Scholar 

  • Zieher, L. M. and Jaim-Etcheverry, G. (1971). Ultrastructural cytochemistry and pharmacology of 5-hydroxytryptamine in adrenergic nerve endings. II. Accumulation of 5-hydroxytryptamine in nerve vesicles containing norepinephrine in rat vas deferens. J. Pharmac. exp. Ther., 178, 30–41

    Google Scholar 

  • Zweig, M. and Axelrod, J. (1969). Relationship between catecholamines and serotonin in sympathetic nerves of the rat pineal gland. J. Neurobiol. 1, 87–97

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1982 The Contributors

About this chapter

Cite this chapter

Jaim-Etcheverry, G., Zieher, L.M. (1982). Coexistence of monoamines in peripheral adrenergic neurones. In: Cuello, A.C. (eds) Co-Transmission. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-06239-3_8

Download citation

Publish with us

Policies and ethics