Advertisement

The co-transmitter hypothesis, with special reference to the storage and release of ATP with noradrenaline and acetylcholine

  • G. Burnstock

Abstract

For many years most of us have accepted the idea that one nerve fibre makes and releases only one transmitter. This has become known as ‘Dale’s principle’, although this nomenclature is not strictly correct and the history behind it is curious (see Eccles, 1976). In the Northnagel Lecture in 1934, Dale speculated in relation to the “axon reflex”, that different endings of a sensory neurone (one a central synapse, the other concerned with antidromic vasodilatation of skin vessels) probably released the same transmitter. In the mid-1950s, it was Eccles who coined the words Dale’s principle (apparently not entirely with the agreement of Dale), and defined it as “at all the axonal branches of a neurone, there is liberation of the same transmitter substance or substances”. Ironically, this definition does not exclude the possibility of “co-transmitters”.

Keywords

Adenine Nucleotide Adenosine Triphosphate Adrenergic Nerve Cholinergic Nerve Ciba Foundation Symposium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akasu, T., Hirai, K. and Koketsu, K. (1981). Increase of acetylcholine-receptor sensitivity by adenosine triphosphate: a novel action of ATP on ACh-sensitivity. Br. J. Pharmac., 74, 505–507CrossRefGoogle Scholar
  2. Black, I. B., Bohn, M. C., Jonakait, G. M. and Kessler, J. A. (1981). Transmitter phenotypic expression in the embryo. In Development of the Autonomic Nervous System, Ciba Foundation Symposium 83, (ed. K. Elliot and G. Lawrenson), Pitman Medical, London, pp. 177–186Google Scholar
  3. Boyne, A. F. (1976). Isolation of synaptic vesicles from Narcine brasiliensis electric organ — some influences on release of vesicular acetylcholine and ATP. Brain Res., 114, 481–491PubMedCrossRefGoogle Scholar
  4. Brănisteanu, D. D., Hăulica, I. D., Proca, B. and Nhue, B. G. (1979). Adenosine effects upon transmitter release parameters in the Mg2+-paralyzed neuromuscular junctions of frog. Naunyn Schmeid. Arch. Pharmac., 308, 273–279CrossRefGoogle Scholar
  5. Brownstein, M. J., Saavedra, J. M., Axelrod, J., Zeman, G. H. and Carpenter, D. O. (1974). Coexistence of several putative neurotransmitters in single identified neurones of Aplysia. Proc. natn. Acad. Sci. U.S.A., 71, 4662–4665CrossRefGoogle Scholar
  6. Buchthal, F. and Kahlson, G. (1944). The motor effect of adenosine triphosphate and allied phosphorus compounds on smooth mammalian muscle. Acta Physiol. Scand., 8, 325–334CrossRefGoogle Scholar
  7. Bunge, R., Johnson, M. and Ross, C. D. (1978). Nature and nurture in development of the autonomic neurone. Science, 199, 1409–1416PubMedCrossRefGoogle Scholar
  8. Burn, J. H. and Rand, M. J. (1965). Acetylcholine in adrenergic transmission. A. Rev. Pharmac., 5, 163–182CrossRefGoogle Scholar
  9. Burnstock, G. (1969). Evolution of the autonomic innervation of visceral and cardiovascular systems in vertebrates. Pharmac. Rev., 21, 247–324Google Scholar
  10. Burnstock, G. (1972). Purinergic nerves. Pharmac. Rev., 24, 509–581Google Scholar
  11. Burnstock, G. (1976). Do some nerve cells release more than one transmitter? Neuroscience, 1, 239–248PubMedCrossRefGoogle Scholar
  12. Burnstock, G. (1978a). Do some sympathetic neurones release both noradrenaline and acetylcholine? Progr. Neurobiol., 11, 205–222CrossRefGoogle Scholar
  13. Burnstock, G. (1978b). A basis for distinguishing two types of purinergic receptor. In Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Approach, (ed. R. W. Straub and L. Bolis), Raven Press, New York, pp. 107–118Google Scholar
  14. Burnstock, G. (1979). Past and current evidence for the purinergic nerve hypothesis. In Physiological and Regulatory Functions of Adenosine and Adenine Nucleotides, (ed. H. P. Baer and G. I. Drummond), Raven Press, New York, pp. 3–32Google Scholar
  15. Burnstock, G. (1981a). Neurotransmitters and trophic factors in the autonomic nervous system. J. Physiol. Lond., 313, 1–35PubMedPubMedCentralCrossRefGoogle Scholar
  16. Burnstock, G. (1981b). (Editor). Purinergic Receptors: Receptors and Recognition, Series B, Volume 12, Chapman and Hall, LondonGoogle Scholar
  17. Burnstock, G., Campbell, G., Satchell, D. G. and Smythe, A. (1970). Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by nonadrenergic inhibitory nerves in the gut. Br. J. Pharmac., 40, 668–688CrossRefGoogle Scholar
  18. Burnstock, G., Cocks, T., Kasakov, L. and Wong, H. (1978). Direct evidence for ATP release from non-adrenergic, non-cholinergic (“purinergic”) nerves in the guinea-pig taenia coli and bladder. Eur. J. Pharmac., 49, 145–149CrossRefGoogle Scholar
  19. Burnstock, G., Crowe, R. and Wong, H. K. (1979). Comparative pharmacological and histochemical evidence for purinergic inhibitory innervation of the portal vein of the rabbit, but not guinea-pig. Br. J. Pharmac., 65, 377–388CrossRefGoogle Scholar
  20. Chan-Palay, V., Jonsson, G. and Palay, S. L. (1978). Serotonin and Substance P co-exist in neurones of the rat’s central nervous system. Proc. natn. Acad. Sci. U.S.A., 75, 1582–1586CrossRefGoogle Scholar
  21. Clanachan, A. S., Johns, A. and Paton, D. M. (1977). Presynaptic inhibitory actions of adenine nucleotides and adenosine on neurotransmission in rat vas deferens. Neuroscience, 2, 597–602PubMedCrossRefGoogle Scholar
  22. Cottrell, G. A. (1976). Does the giant cerebral neurone of Helix release two transmitters: ACh and serotonin? J. Physiol. Lond., 259, 44P–45PPubMedGoogle Scholar
  23. Davies, L. P. (1978). ATP in cholinergic nerves — evidence for axonal-transport of a stable pool. Expl. Brain Res., 33, 149–157CrossRefGoogle Scholar
  24. De Mey, J., Burnstock, G. and Vanhoutte, P. M. (1979). Modulation of the evoked release of noradrenaline in canine saphenous vein via presynaptic receptors for adenosine but not ATP. Eur. J. Pharmac., 55, 401–405CrossRefGoogle Scholar
  25. Douglas, W. W. (1968). Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Br. J. Pharmac., 34, 451–474CrossRefGoogle Scholar
  26. Douglas, W. W. and Poisner, A. M. (1966). On the relation between ATP splitting and secretion in the adrenal chromaffin cell: extrusion of ATP (unhydrolised) during release of catecholamines. J. Physiol. Lond., 183, 249–256PubMedPubMedCentralCrossRefGoogle Scholar
  27. Dowdall, M. J. (1978). Adenine nucleotides in cholinergic transmission: presynaptic aspects. J. Physiol. Paris, 74, 497–501PubMedGoogle Scholar
  28. Dowdall, M. J., Boyne, A. F. and Whittaker, V. P. (1974). Adenosine triphosphate: a constituent of cholinergic synaptic vesicles. Biochem. J., 140, 1–12PubMedPubMedCentralCrossRefGoogle Scholar
  29. Dowdle, E. B. and Maske, R. (1980). The effects of calcium concentration on the inhibition of cholinergic neurotransmission in the myenteric plexus of guinea-pig ileum by adenine nucleotides. Br. J. Pharmac., 71, 245–252CrossRefGoogle Scholar
  30. Eccles, J. (1976). From electrical to chemical transmission in the central nervous system. Notes and Records R. Soc. Lond., 30, 219–230CrossRefGoogle Scholar
  31. Enero, M. A. and Saidman, B. O. (1977). Possible feed-back inhibition of noradrenaline release by purine compounds. Naunyn Schmiedebergs Arch. Pharmac., 297, 39–46CrossRefGoogle Scholar
  32. Ewald, D. A. (1976). Potentiation of postjunctional cholinergic sensitivity of rat diaphragm muscle by high-energy phosphate adenine nucleotides. J. Membrane Biol., 29, 47–65CrossRefGoogle Scholar
  33. Fedan, J. S., Hogaboom, G. K., O’Donnell, J. P., Colby, J. and Westfall, D. P. (1981). Contribution by purines to the neurogenic response of the vas deferens of the guinea-pig. Eur. J. Pharmac., 69, 41–53CrossRefGoogle Scholar
  34. Fredholm, B. B. (1974). Vascular and metabolic effects of theophylline, dibutyryl cyclic AMP and dibutyryl cyclic GMP in canine subcutaneous adipose tissue in situ. Acta Physiol. Scand., 90, 226–236PubMedCrossRefGoogle Scholar
  35. Fredholm, B. B., Hedqvist, P. and Vernet, L. (1979). Release of adenosine from the rabbit heart by sympathetic-nerve stimulation. Acta Physiol. Scand., 106, 381–382PubMedCrossRefGoogle Scholar
  36. Fujita, T. and Kobayashi, S. (1977). Structure and function of gut endocrine cells. Int. Rev. Cytol., suppl., 6, 187–233Google Scholar
  37. Geffen, L. B. and Livett, B. G. (1971). Synaptic vesicles in sympathetic neurons. Physiol. Rev., 51, 98–157PubMedGoogle Scholar
  38. Ginsborg, B. L. and Hirst, G. D. S. (1971). Theophylline and adenosine at the neuromuscular junction. Br. J. Pharmac., 43, 432–433Google Scholar
  39. Ginsborg, B. L. and Hirst, G. D. S. (1972). The effect of adenosine on the release of the transmitter from the phrenic nerve of the rat. J. Physiol. Lond., 224, 629–645PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gintzler, A. R. and Musacchio, J. M. (1975). Interactions of morphine, adenosine, adenosinetriphosphate and phosphodiesterase inhibitors on field-stimulated guinea-pig ileum. J. Pharmac. exp. Ther., 194, 575–582Google Scholar
  41. Gustafsson, L., Hedqvist, P., Fredholm, B. B. and Lundgren, G. (1978). Inhibition of acetylcholine release in guinea pig ileum by adenosine. Acta Physiol. Scand., 104, 469–478PubMedCrossRefGoogle Scholar
  42. Harms, H. H., Wardeh, G. and Mulder, A. H. (1978). Adenosine modulates depolarizationinduced release of 3H-noradrenaline from slices of rat-brain neocortex. Eur. J. Pharmac., 49, 305–308CrossRefGoogle Scholar
  43. Hayashi, E., Mori, M., Yamada, S., Kunitomo, M. (1978). Effects of purine compounds on cholinergic nerves — specificity of adenosine and related compounds on acetylcholinerelease in electrically stimulated guinea-pig ileum. Eur. J. Pharmac., 48, 297–307CrossRefGoogle Scholar
  44. Hayashi, E., Yamada, S. and Shinozuka, K. (1981). The influence of extracellular Ca2+ concentration on the inhibitory effect of adenosine in guinea-pig ileal longitudinal muscles. Jap. J. Pharmac., 31, 141–143CrossRefGoogle Scholar
  45. Head, R. J., Stitzel, R. E., Delaland, I. S. and Johnson, S. M. (1977). Effect of chronic denervation of activities of monoamine-oxidase and catechol-o-methyl transferase and on contents of noradrenaline and adenosine-triphosphate in rabbit ear artery. Blood Vessels, 14, 229–239PubMedGoogle Scholar
  46. Hedqvist, P. and Fredholm, B. B. (1976). Effects of adenosine on adrenergic neurotransmission; prejunctional inhibition and postjunctional enhancement. Naunyn-Schmiedebergs Arch. Pharmac., 293, 217–223CrossRefGoogle Scholar
  47. Hedqvist, P. and Fredholm, B. B. (1979). Inhibitory effect of adenosine on adrenergic neuroeffector transmission in the rabbit heart. Acta Physiol. Scand., 105, 120–122PubMedCrossRefGoogle Scholar
  48. Heller, I. H. and Mcllwain, H. (1973). Release of 14C-adenine derivatives from isolated subsystems of the guinea-pig brain: actions of electrical stimulation and of papaverine. Brain Res., 53, 105–116PubMedCrossRefGoogle Scholar
  49. Hendry, I. A., Hill, C. E. and Bonyhady, R. E. (1981). Interactions between developing autonomic neurons and their target tissues. In Development of the Autonomic Nervous System, Ciba Foundation Symposium 83, (ed. K. Elliot and G. Lawrenson), Pitman Medical, London, pp. 194–206Google Scholar
  50. Hökfelt, T., Lundberg, J. M., Schultzberg, M., Johansson, O., Skirboll, L., Änggård, A., Fredholm, B., Hamberger, B., Pernow, B., Rehfeld, J. and Goldstein, M. (1980). Cellular localization of peptides in neural structures. Proc. R. Soc. Lond., B210, 63–77PubMedCrossRefGoogle Scholar
  51. Holck, M. I. and Marks, B. H. (1978). Purine nucleoside and nucleotide interactions on normal subsensitive alpha adrenoreceptor responsiveness in guinea-pig vas deferens. J. Pharmac. exp. Ther., 205, 104–117Google Scholar
  52. Horn, G. J. and Lokhandwala, M. F. (1981). Effect of dipyridamole on sympathetic nerve function: role of adenosine and presynaptic purinergic receptors. J. cardiovasc. Pharmac., 3, 391–401CrossRefGoogle Scholar
  53. Hoyes, A. D., Barber, P. and Martin, B. G. H. (1975). Comparative ultrastructure of ureteric innervation. Cell Tissue Res., 160, 515–524PubMedCrossRefGoogle Scholar
  54. Irvin, J. L. and Irvin, E. M. (1954). The interaction of quinacrine with adenine nucleotides. J. biol. Chem., 210, 45–56PubMedGoogle Scholar
  55. Israel, M., Lesbats, B., Meunier, F. M. and Stinnakre, J. (1976). Postsynaptic release of adenosine triphosphate induced by single impulse transmitter action. Proc. R. Soc. Lond., B193, 461–468CrossRefGoogle Scholar
  56. Israel, M., Lesbats, R., Manaranche, J., Marsal, P., Mastour-Frachan, P. and Meunier, F. M. (1977). Related changes in amounts of ACh and ATP in resting and active Torpedo nerve electroplaque synapses. J. Neurochem., 28, 1259–1267PubMedCrossRefGoogle Scholar
  57. Israel, M., Dunant, Y., Lesbats, B., Manaranche, R., Marsal, J. and Meunier, F. (1979). Rapid acetylcholine and adenosine triphosphate oscillations triggered by stimulation of the Torpedo electric organ. J. exp. Biol., 81, 63–73PubMedGoogle Scholar
  58. Israel, M., Lesbats, B., Manarance, R., Meunier, F. M. and Frachon, P. (1980). Retrograde inhibition of transmitter release by ATP. J. Neurochem., 34, 923–932PubMedCrossRefGoogle Scholar
  59. Kamikawa, Y., Cline, W. H. and Su, C. (1980). Diminished purinergic modulation of the vascular adrenergic neurotransmission in spontaneously hypertensive rats. Eur. J. Pharmac., 66, 347–354CrossRefGoogle Scholar
  60. Kazic, T. and Milosavljevic, D. (1976). Influence of adenosine, cAMP and db-cAMP on responses of the isolated terminal guinea-pig ileum to electrical stimulation. Arch. int. Pharmacodyn. Ther., 223, 187–195PubMedGoogle Scholar
  61. Kluge, H., Fischer, H-D., Zahlten, W., Hartmann, W. and Wieczorek, V. (1977). Brain acetylcholine, adenine nucleotides and their degradation products after intraperitoneal and intracerebral adenosine administration. Acta biol. Med. Germ., 36, 1299–1306PubMedGoogle Scholar
  62. Kosterlitz, H. W. and Lees, G. M. (1972). Interrelationships between adrenergic and cholinergic mechanisms. In Catecholamines, Handbook of Experimental Pharmacology, 33, (ed. H. Blaschlco and E. Muscholl), Springer, Berlin, pp. 762–812Google Scholar
  63. Kuroda, Y., Saito, M. and Kobayashi, K. (1976). Concommitant changes in cyclic AMP level and postsynaptic potentials of olfactory cortex slices induced by adenosine derivatives. Brain Res., 109, 196–201PubMedCrossRefGoogle Scholar
  64. Langer, S. Z. and Pinto, J. E. B. (1976). Possible involvement of a transmitter different from norepinephrine in residual responses to nerve stimulation of cat nictitating membrane after pretreatment with reserpine. J. Pharmac. exp. Ther., 196, 697–713Google Scholar
  65. Le Douarin, N. (1981). Plasticity in the development of the peripheral nervous system. In Development of the Autonomic Nervous System, Ciba Foundation Symposium 83, (ed. K. Elliot and G. Lawrenson), Pitman Medical, London, pp. 19–46Google Scholar
  66. Leighton, H. J. and Parmeter, L. L. (1977). Presynaptic inhibition of acetylcholine (ACh) and release by adenosine and adenosine analogs. Fedn Proc.,36, 976Google Scholar
  67. Lokhandwala, M. F. (1979). Inhibition of cardiac sympathetic neurotransmission by adenosine. Eur. J. Pharmac., 60, 353–357CrossRefGoogle Scholar
  68. MacKenzie, I., Burnstock, G. and Dolly, J. O. (1981). The effects of purified botulinum neurotoxin type A on cholinergic, adrenergic and non-adrenergic, atropine-resistant autonomic neuromuscular transmission. Neuroscience, in pressGoogle Scholar
  69. Meunier, F. M. (1978). Effet de la dépolarisation sur la liberation d’ATP pre- et postsynaptique. Nucleotides and Neurotransmission Conf. Neurobiologie de Gif, p.15Google Scholar
  70. Meunier, F. M., Israel, M. and Lesbats, B. (1975). Release of ATP from stimulated nerve electroplaque junctions. Nature London, 257, 407–408PubMedCrossRefGoogle Scholar
  71. Moody, C. and Burnstock, G. (1982). Evidence for the presence of P1 -purinoceptors on cholinergic nerve terminals in the guinea-pig ileum. Eur. J. Pharmac., 77, 1–9CrossRefGoogle Scholar
  72. Mori, M. I., Yamada, S., Takamura, S. and Hayashi, E. (1973). Effect of purine nucleotides on acetylcholine output from cholinergic nerves in guinea-pig ileum. Jap. J. Pharmac., 23, suppl., 124, 137Google Scholar
  73. Moritoki, H., Kanbe, T., Maruoka, M., Ohara, M. and Ishida, Y. (1978). Potentiation by dipyridamole of inhibition of guinea-pig ileum twitch response caused by adeninederivatives. J. Pharmac. exp. Ther., 204, 343–350Google Scholar
  74. Moylan, R. D. and Westfall, T. C. (1979). Effect of adenosine on adrenergic neurotransmission in the super-fused rat portal-vein. Blood Vessels, 16, 302–310PubMedGoogle Scholar
  75. Mueller, A. L., Mosimann, W. F. and Weiner, N. (1979). Effects of adenosine on neurally mediated norepinephrine release from the cat spleen. Eur. J. Pharmac., 53, 329–333CrossRefGoogle Scholar
  76. Mukherjee, C. and Lefkowitz, R. J. (1976). Desensitization of beta-adrenergic receptors by beta-adrenergic agonists in a cell-free system: resensitization by guanosine 5′-(beta, gamma-imino) triphosphate and other purine nucleotides. Proc. natn. Acad. Sci. U.S.A., 73, 1494–1498CrossRefGoogle Scholar
  77. Muramatsu, I., Fujiwara, M., Miura, A. and Sakakibara, Y. (1981). Possible involvement of adenine nucleotides in sympathetic neuroeffector mechanisms of dog basilar artery. J. Pharmac. exp. Ther., 216, 401–408Google Scholar
  78. Nakanishi, H. and Takeda, H. (1973). The possible role of adenosine triphosphate in chemical transmission between the hypogastric nerve terminal and seminal vesicle in the guinea-pig. Jap. J. Pharmac., 23, 479–490CrossRefGoogle Scholar
  79. Nedergaard, O. A., Husted, S. and Schrold, J. (1980). Presynaptic regulation of noradrenaline release in blood vessels: effects of cholinergic drugs, adenosine and adenine nucleotides. In Vascular Neuroeffector Mechanisms, (ed. J. A. Bevan), Raven Press, New York, pp. 139–146Google Scholar
  80. Okamoto, M., Askari, A. and Kuperman, A. S. (1964). The stabilizing actions of adenosine triphosphate and related nucleotides on calcium-deficient nerve. J. Pharmac. exp. Ther., 144, 229–235Google Scholar
  81. Okwuasaba, F. K. and Cook, M. A. (1980). The effect of theophylline and other methylxanthines on presynaptic inhibition of the longitudinal smooth muscle of the guinea pig ileum induced by purine nucleotides. J. Pharmac. exp. Ther., 215, 704–709Google Scholar
  82. Olson, L., Ålund, M. and Norberg, K-A. (1976). Fluorescence microscopical demonstration of a population of gastrointestinal nerve fibres with a selective affinity for quinacrine. Cell Tissue Res., 171, 407–423PubMedCrossRefGoogle Scholar
  83. Paton, D. M. (1981). Presynaptic neuromodulation mediated by purinergic receptors. In Purinergic Receptors, Receptors and Recognition, Series B, volume 12, (ed. G. Burnstock), Chapman and Hall, London, pp. 199–219CrossRefGoogle Scholar
  84. Paton, D. M., Bar, H. P., Clanachan, A. S. and Lauzon, P. A. (1978). Structure activity relations for inhibition of neurotransmission in rat vas deferens by adenosine. Neuroscience, 3, 65–70CrossRefGoogle Scholar
  85. Patterson, P. H. (1978). Environmental determination of autonomic neutrotransmitter functions. A. Rev. Neurosci., 1, 1–17CrossRefGoogle Scholar
  86. Potter, D. D., Landis, S. C. and Furshpan, E. J. (1981). Adrenergic-cholinergic dual function in cultured sympathetic neurons of the rat. In Development of the Autonomic Nervous System, Ciba Foundation Symposium 83, (ed. K. Elliot and G. Lawrenson), Pitman Medical, London, pp. 123–138Google Scholar
  87. Pull, I. and McIlwain, H. (1972). Adenine derivatives as neurohumoral agents in the brain. The quantities liberated on excitation of superfused cerebral tissues. Biochem. J., 130, 975–981PubMedPubMedCentralCrossRefGoogle Scholar
  88. Ribeiro, J. A. (1977). Potentiation of postjunctional cholinergic sensitivity of rat diaphragm muscle by high-energy-phosphate adenine nucleotides. J. Membrane Biol., 33, 401–402CrossRefGoogle Scholar
  89. Ribeiro, J. A. (1978). ATP-related nucleotides and adenosine on neurotransmission. Life Sci., 22, 1373–1380PubMedCrossRefGoogle Scholar
  90. Ribeiro, J. A. (1979). Purinergic modulation of transmitter release. J. theor. Biol., 80, 259–270PubMedCrossRefGoogle Scholar
  91. Ribeiro, J. A. and Dominguez, M. L. (1978). Mechanisms of depression of neuromuscular transmission by ATP and adenosine. J. Physiol. Paris, 74, 491–496PubMedGoogle Scholar
  92. Ribeiro, J. A. and Walker, J. (1975). The effects of adenosine triphosphate and adenosine diphosphate on transmission at the rat and frog neuromuscular junctions. Br. J. Pharmac., 54, 213–218CrossRefGoogle Scholar
  93. Rose, G. and Schubert, P. (1977). Release and transfer of 3H-adenosine derivatives in cholinergic septal system. Brain Res., 121, 353–357PubMedCrossRefGoogle Scholar
  94. Saji, Y., Escalona de Motta, G. and del Castillo, J. (1975). Depolarization and potentiation of responses to acetylcholine elicited by ATP on frog muscle. Life Scf., 16, 945–954CrossRefGoogle Scholar
  95. Sawynok, J. and Jhamandas, K. H. (1976). Inhibition of acetylcholine release from cholinergic nerves by adenosine, adenine-nucleotides and morphine-antagonism by theophylline. J. Pharmac. exp. Ther., 197, 379–390Google Scholar
  96. Scholfield, C. N. (1978). Depression of evoked-potentials in brain-slices by adenosine compounds. Br. J. Pharmac., 63, 239–244CrossRefGoogle Scholar
  97. Silinsky, E. M. (1975). On the association between transmitter secretion and the release of adenine nucleotides from mammalian motor nerve terminals. J. Physiol. Lond., 147, 145–162PubMedPubMedCentralCrossRefGoogle Scholar
  98. Silinsky, E. M. (1980). Evidence for specific adenosine receptors at cholinergic nerve endings. Br. J. Pharmac., 71, 191–194CrossRefGoogle Scholar
  99. Silinsky, E. M. and Hubbard, J. I. (1973). Release of ATP from rat motor nerve terminals. Nature London, 243, 404–405PubMedCrossRefGoogle Scholar
  100. Starke, K. (1977). Regulation of noradrenaline release by presynaptic receptor systems. Rev. Physiol. Biochem. Pharmac., 77, 1–124Google Scholar
  101. Stevens, P., Robinson, R. L., Van Dyke, K. and Stitzel, R. (1972). Studies of the synthesis and release of adenosine triphosphate-8-3H in the isolated perfused cat adrenal gland. J. Pharmac. exp. Ther., 181, 463–471Google Scholar
  102. Stjärne, L. and Lishajko, F. (1966). Comparison of spontaneous loss of catecholamines and ATP in vitro from isolated bovine adrenomedullary, vesicular gland, vas deferens and splenic nerve granules. J. Neurochem., 13, 1213–1216PubMedCrossRefGoogle Scholar
  103. Stone, T. W. (1981). Physiological roles for adenosine and adenosine 5′-triphosphate in the nervous system. Neuroscience, 6, 523–555PubMedCrossRefGoogle Scholar
  104. Su, C. (1975). Neurogenic release of purine compounds in blood-vessels. J. Pharmac. exp. Ther., 195, 159–166Google Scholar
  105. Su, C. (1978a). Modes of vasoconstrictor and vasodilator neurotransmission. Blood Vessels, 15, 183–189PubMedGoogle Scholar
  106. Su, C. (1978b). Purinergic inhibition of adrenergic transmission in rabbit blood vessels. J. Pharmac. exp. Ther., 204, 351–361Google Scholar
  107. Su, C., Bevan, J. A. and Burnstock, G. (1971). 3H-Adenosine triphosphate: release during stimulation of enteric nerves. Science. 173, 337–339CrossRefGoogle Scholar
  108. Takagi, K. and Takayanagi, I. (1972). Effect of N6, 2′-O-dibutyryl 3′5′-cyclic adenosine monophosphate, 3′,5′-cyclic adenosine monophosphate and adenosine triphosphate on acetylcholine output from cholinergic nerves in guinea pig ileum. Jap. J. Pharmac., 22, 33–36CrossRefGoogle Scholar
  109. Van Dyke, K., Robinson, R., Urquilla, P., Smith, D., Taylor, M., Truth, M. and Wilson, M. (1977). Analysis of nucleotides and catecholamines in bovine medullary granules by anion-exchange high pressure liquid chromatography and fluorescence evidence that most of catecholamines in chromaffin granules are stored without associated ATP. Pharmacology, 15, 377–391PubMedCrossRefGoogle Scholar
  110. Verhaeghe, R. H., Vanhoutte, P. M. and Shepherd, J. T. (1977). Inhibition of sympathetic neurotransmission in canine blood vessels by adenosine and adenine nucleotides. Circular. Res., 40, 208–215CrossRefGoogle Scholar
  111. Vizi, E. S. (1979). Presynaptic modulation of neurochemical transmission. Progr. Neurobiol., 12, 181–290CrossRefGoogle Scholar
  112. Vizi, E. S. and Knoll, J. (1976). The inhibitory effect of adenosine and related nucleotides on the release of acetylcholine. Neuroscience, 1, 391–398PubMedCrossRefGoogle Scholar
  113. Wakade, A. R. and Wakade, T. D. (1978). Inhibition of noradrenaline release by adenosine. J. Physiol. Lond., 282, 35–49PubMedPubMedCentralCrossRefGoogle Scholar
  114. Westfall, D. P., Stitzel, R. E. and Rowe, J. N. (1978). The postjunctional effects and neural release of purine compounds in guinea-pig vas deferens. Eur. J. Pharmac., 50, 27–38CrossRefGoogle Scholar
  115. Wu, P. H. and Phillis, J. W. (1978). Distribution and release of adenosine-triphosphate in ratbrain. Neurochem. Res., 3, 563–571PubMedCrossRefGoogle Scholar
  116. Zimmerman, H. (1978). Turnover of adenine nucleotides in cholinergic synaptic vesicles of the Torpedo electric organ. Neuroscience, 3, 827–836CrossRefGoogle Scholar
  117. Zimmerman, H. (1979). Commentary: vesicle recycling and transmitter release. Neuroscience, 4, 1773–1803CrossRefGoogle Scholar
  118. Zimmerman, H. and Bokor, J. T. (1979). 5′-triphosphate recycles independently of acetylcholine in cholinergic synaptic vesicles. Neurosci. Lett., 13, 319–324CrossRefGoogle Scholar
  119. Zimmerman, H. and Denston, C. R. (1976). Adenosine triphosphate in cholinergic vesicles isolated from the electric organ of Electrophorus electricus. Brain Res., 111, 365–376CrossRefGoogle Scholar
  120. Zimmerman, H. and Denston, C. R. (1977). Separation of synaptic vesicles of different functional states from the cholinergic synapses of the Torpedo electric organ. Neuroscience, 2, 715–730CrossRefGoogle Scholar
  121. Zimmerman, H., Dowdall, M. J. and Lane D. A. (1979). Purine salvage at the cholinergic nerve-endings of the Torpedo electric organ-central role of adenosine. Neuroscience, 4, 979–993CrossRefGoogle Scholar

Copyright information

© The Contributors 1982

Authors and Affiliations

  • G. Burnstock
    • 1
  1. 1.Department of Anatomy and Embryology, and Centre for NeuroscienceUniversity CollegeLondonUK

Personalised recommendations