Advertisement

The Influence of Genetic Factors on the Resistance of Ruminants to Gastrointestinal Nematode and Trypanosome Infections

  • J. D. Dargie
Chapter

Abstract

During the past 80 years there has been a steady flow of reports comparing various breeds of sheep and cattle, as well as individuals within breeds, in terms of their resistance to gastrointestinal nematodes and trypanosomes. The vast majority indicate that genetic factors play a part in influencing resistance to the parasites concerned. In view of the economic impact of the diseases caused by these parasites, the possibility of improving livestock production by developing genetically resistant animals has aroused considerable interest. This chapter reviews genetic resistance to parasitic infections in cattle and sheep, and includes a discussion of underlying mechanisms, from the standpoint of resistance to the parasites themselves and of resistance to the diseases they produce. An attempt is also made to assess the potential value of resistant livestock against the background of existing methods of parasite control.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, D. B. (1978). The induction of selective immunological unresponsiveness in cells of blood and lymphoid tissue during primary infection of sheep with the abomasal nematode Haemonchus contortus. Aust. J. exp. Biol. med. Sci., 56, 107–18CrossRefGoogle Scholar
  2. Adams, D. B. and Cripps, A. W. (1977). Cellular changes in the intestinal lymph of sheep infected with the enteric nematode Trichostrongylus colubriformis. Aust. J. exp. Biol. med. Sci., 55, 509–22CrossRefGoogle Scholar
  3. Agar, N. S., Evans, J. V. and Roberts, J. (1972). Red blood cell potassium and haemoglobin polymorphism in sheep. A review. Anim. Breed. Abstr., 40, 407–36Google Scholar
  4. Akol, G. W. O. and Murray, Max (1981). Early events in the pathogenesis of African trypanosomiasis in cattle. I. The kinetics of development of the localised skin reaction (chancre) which follows the bite of Glossina morsitans morsitans infected with Trypanosoma congolense (in press)Google Scholar
  5. Allonby, E. W. and Urquhart, G. M. (1973). Self-cure of Haemonchus contortus infections under field conditions. Parasitology, 66, 43–53CrossRefGoogle Scholar
  6. Allonby, E. W. and Urquhart, G. M. (1976). A possible relationship between haemonchosis and haemoglobin polymorphism in Merino sheep in Kenya. Res. vet. Sci., 20, 212–4Google Scholar
  7. Altaif, K. I. (1975). Genetic resistance to helminth infections in sheep. PhD Thesis, University of GlasgowGoogle Scholar
  8. Altaif, K. I. and Dargie, J. D. (1978a). Genetic resistance to helminths. The influence of breed and haemoglobin type on the response of sheep to primary infections with Haemonchus contortus. Parasitology, 77, 161–75CrossRefGoogle Scholar
  9. Altaif, K. I. and Dargie, J. D. (1978b). Genetic resistance to helminths. The influence of breed and haemoglobin type on the response of sheep to reinfection with Haemonchus contortus. Parasitology, 77, 177–87CrossRefGoogle Scholar
  10. Altaif, K. I. and Dargie, J. D. (1978c). Genetic resistance to helminths. Comparison of the development of Ostertagia circumcincta infections in Scottish Blackface sheep of different haemoglobin type. Res. vet. Sci., 24, 391–3Google Scholar
  11. Bangham, A. D. and Blumberg, B. S. (1958). Distribution of electrophoretically different haemoglobins among some cattle breeds of Europe and Africa. Nature, Lond., 181, 1551–2CrossRefGoogle Scholar
  12. Bradley, R. E., Radhakrishnan, C. V., Patil-Kulkarni, V. G. and Loggins, P. E. (1973). Responses of Florida Native and Rambouillet lambs exposed to one and two oral doses of Haemonchus contortus. Am. J. vet. Res., 34, 729–35Google Scholar
  13. Chandler, R. L. (1958). Studies on the tolerance of N’dama cattle to trypanosomiasis. J. comp. Path. Ther., 68, 253–60CrossRefGoogle Scholar
  14. Cripps, A. W. and Rothwell, T. L. W. (1978). Immune responses of sheep to the parasitic nematode Trichostrongylus colubriformis: Infections in Thiry-Vella loops. Aust. J. exp. Biol. med. Sci., 56, 99–106CrossRefGoogle Scholar
  15. Cunningham, M. P. (1966). Immunity in bovine trypanosomiasis. E. Afr. med. J., 43, 394–7Google Scholar
  16. Cuperlovic, K., Altaif, K. I. and Dargie, J. D. (1978). Genetic resistance to helminths: a possible relationship between haemoglobin type and the immune responses of sheep to non-parasitic antigens. Res. vet. Sci., 25, 125–6Google Scholar
  17. Cvetkovic, L. J., Lepojev, Olga and Vulio, I. (1973). Ispitivanje rasne otpornostic cigaje merino prekosa i merino kavkaz prema zeludacno-crevnim strongilidama u prirodnim uslovima infekcije. Vet. Glas., 27, 867–72Google Scholar
  18. Dargie, J. D. (1980a). The pathophysiological effects of gastrointestinal and liver parasites in sheep. In Digestive Physiology and Metabolism in Ruminants (Y. Ruckebusch and P. Thivend, eds), MTP Press Ltd., Lancaster, pp. 349–71CrossRefGoogle Scholar
  19. Dargie, J. D. (1980b). Pathophysiology of trypanosomiasis in the bovine. In Isotope and Radiation Research on Animal Diseases and their Vectors, IAEA, Vienna, pp. 121–31Google Scholar
  20. Dargie, J. D. (1981). Blood protein turnover in parasitised ruminants. The influence of host nutrition. In Isotopes and Radiation in Parasitology IV, IAEA, Vienna (in press).Google Scholar
  21. Dargie, J. D. and Allonby, E. W. (1975). Pathophysiology of single and challenge infections of Haemonchus contortus in Merino sheep. Studies on the kinetics of red cell destruction and production with some observations on the ‘self-cure’ phenomenon. Int. J. Parasit., 5, 147–57CrossRefGoogle Scholar
  22. Dargie, J. D., Murray, P. K., Murray, Max, Grimshaw, W. R. T. and McIntyre, W. I. M. (1979). Bovine trypanosomiasis: the red cell kinetics of N’dama and Zebu cattle infected with Trypanosoma congolense. Parasitology, 78, 271–86CrossRefGoogle Scholar
  23. Desowitz, R. S. (1959). Studies on immunity and host-parasite relationships. I. The immunological response of resistant and susceptible breeds of cattle to trypanosomal challenge. Ann. trop. Med. Parasit., 53, 293–313Google Scholar
  24. Dineen, J. K., Gregg, P. and Lascelles, A. K. (1978). The response of lambs to vaccination at weaning with irradiated Trichostrongylus colubriformis larvae: segregation into ‘responders’ and ‘non-responders’. Int. J. Parasit., 8, 59–63CrossRefGoogle Scholar
  25. Dineen, J. K., Gregg, P., Windon, R. G., Donald, A. D. and Kelly, J. D. (1977). The role of immunologically specific and non-specific components of resistance in cross-protection to intestinal nematodes. Int. J. Parasit., 7, 211–5CrossRefGoogle Scholar
  26. Dineen, J. K. and Kelly, J. D. (1976). The levels of prostaglandins in the small intestine of rats during primary and secondary infection with Nippostrongylus braziliensis. Int. Archs Allergy appl. Immun., 51, 429–40CrossRefGoogle Scholar
  27. Dineen, J. K. and Windon, R. G. (1980a). The effect of sire selection on the response of lambs to vaccination with irradiated Trichostrongylus colubriformis larvae. Int. J. Parasit., 10, 189–96CrossRefGoogle Scholar
  28. Dineen, J. K. and Windon, R. G. (1980b). The effect of acquired resistance on adult worms of Trichostrongylus colubriformis in lambs. Int. J. Parasit., 10, 249–53CrossRefGoogle Scholar
  29. Doppler, W., Sere, C. and Schreiber, J. (1980). The economics of beef production in various breeds and cross-breeds in Avetonou/Togo. In Trypanotolerance and Animal Production (E. Karbe and E. K. Freitas, eds), Centre de Recherche et d’Elevage Avetonou, Togo (CREAT), pp. 30–49Google Scholar
  30. Duncan, J. L., Smith, W. D. and Dargie, J. D. (1978). Possible relationship of levels of mucosal IgA and serum IgG to immune unresponsiveness of lambs to Haemonchus contortus. Vet. Parasit., 4, 21–7CrossRefGoogle Scholar
  31. Evans, J. V. and Blunt, M. H. (1961). Variations in the gene frequencies of potassium and haemoglobin types in Romney Marsh and Southdown sheep established away from their native environment. Aust. J. biol. Sci., 14, 100–8Google Scholar
  32. Evans, J. V., Blunt, M. H. and Southcott, W. H. (1963). The effects of infection with Haemonchus contortus on the sodium and potassium concentrations in the erythrocytes and plasma in sheep of different haemoglobin types. Aust. J. agric. Res., 4, 549–58CrossRefGoogle Scholar
  33. Evans, J. V. and Whitlock, J. H. (1964). Genetic relation between maximumv haematocrit values and haemoglobin type in sheep. Science, N.Y., 145, 1318CrossRefGoogle Scholar
  34. Finelle, P. (1973). African animal trypanosomiasis: Part IV Economic problems. Wld Anim. Rev., 5, 15–9Google Scholar
  35. French, M. H. (1938). Studies in animal trypanosomiasis. I. Nitrogen and mineral metabolic disturbances induced by Trypanosoma congolense and Trypanosoma brucei. J. Comp. Path., 51, 23–35CrossRefGoogle Scholar
  36. Frisch, J. E. (1981). Factors affecting resistance to ecto- and endo-parasites of cattle in tropical areas and the implications for selection. In Isotopes and Radiation in Parasitology IV, IAEA, Vienna, pp. 17–33Google Scholar
  37. Frisch, J. E. and Vercoe, J. E. (1978). Utilising breed differences in growth of cattle in the tropics. Wld Anim. Rev., 25, 8–12Google Scholar
  38. Gordon, H. McL. (1967). Self-cure reaction. In Reaction of the Host to Parasitism (E. J. L. Soulsby, ed.), N. G. Elwert, Universitäts und Verlagsbuchhandlung, Marburg/Lahn, Germany, pp. 174–90Google Scholar
  39. Gray, A. R. and Luckins, A. G. (1980). The initial stage of infection with cyclically-transmitted Trypanosoma congolense in rabbits, calves and sheep. J. comp. Path. Ther., 90, 499–512CrossRefGoogle Scholar
  40. Greig, W. A. and McIntyre, W. I. M. (1979). Diurnal variation in rectal temperature of N’dama cattle in the Gambia. Br. vet. J., 135, 113–8Google Scholar
  41. Holmes, P. H. (1980). Vaccination against trypanosomes. In Vaccines against Parasites (A. E. R. Taylor and R. Muller, eds), Blackwell Scientific, London, pp. 75–105Google Scholar
  42. Hudson, K. M. and Terry, R. J. (1979). Immunodepression and the course of infection of a chronic Trypanosoma brucei infection in mice. Parasite Immun., 1, 317–26CrossRefGoogle Scholar
  43. ILCA (1979). Trypanotolerant Livestock in West and Central Africa, Vol. 1: General Study. International Livestock Centre for Africa, Addis AbabaGoogle Scholar
  44. Jarrett, E. E. E. and Urquhart, G. M. (1971). The immune response to nematode infections. Int. Rev. trop. Med., 4, 53–84Google Scholar
  45. Jennings, F. W., Whitelaw, D. D., Holmes, P. H. and Urquhart, G. M. (1978). The susceptibility of strains of mice to infection with Trypanosoma congolense. Res. vet. Sci., 25, 399–400Google Scholar
  46. Jilek, A. F. and Bradley, R. E. (1969). Haemoglobin types and resistance to Haemonchus contortus in sheep. Am. J. vet. Res., 30, 1773–8Google Scholar
  47. Kloosterman, A., Albers, G. A. A. and Van Den Brink, R. (1978). Genetic variation among calves in resistance to nematode parasites. Vet. Parasit., 4, 353–68CrossRefGoogle Scholar
  48. Knight, R. A., Vegors, H. H. and Glimp, H. A. (1973). Effects of breed and date of birth of lambs on gastrointestinal nematode infections. Am. J. vet. Res., 34, 323–7Google Scholar
  49. Le Jambre, L. F. (1978). Host genetic factors in helminth control. In The Epidemiology and Control of Gastrointestinal Parasites of Sheep in Australia (A. D. Donald, W. H. Southcott and J. K. Dineen, eds), CSIRO Australia, p. 137Google Scholar
  50. Letteneur, L. (1978). Crossbreeding N’dama and Jersey cattle in Ivory Coast. Wld Anim. Rev., 27, 36–42Google Scholar
  51. Losos, G. and Chouinard, A. (1979). Pathogenicity of Trypanosomes. IDRC, OttawaGoogle Scholar
  52. MacAskill, J. A., Holmes, P. H., Jennings, F. W. and Urquhart, G. M. (1981). Immunological clearance of 7 5 Se-labelled Trypanosoma brucei in mice. III. Studies in animals with acute infections. Immunology (in press)Google Scholar
  53. McEwan Jenkinson, D. and Nay, T. (1973). The sweat glands and hair follicles of Asian, African and South American cattle. Aust. J. biol. Sci., 26, 259–75Google Scholar
  54. McFarlane, W. V., Howard, B., Maloiy, G. M. O. and Hopcraft, D. (1972). Tritiated water in field studies of ruminant metabolism in Africa. In Isotope Studies on the Physiology of Domestic Animals, IAEA, Vienna, pp. 82–102Google Scholar
  55. MacLennan, K. J. R. (1974). The epizootiology of tsetse transmitted trypanosomiasis in relation to livestock development and control measures. In Control Programs for Trypanosomes and their Vectors, Rev. Elev. Med. Vet. Pays Trop. Actes du Colloque, Paris, pp. 259–68Google Scholar
  56. Miller, H. R. P. and Nawa, Y. (1979). Immune regulation of intestinal goblet cell differentiation. Specific induction of non-specific protection against helminths? Nouv. Revue fr. hemat., 21, 31–45Google Scholar
  57. Morrison, W. I. and Murray, M. (1979). Trypanosoma congolense: Inheritance of susceptibility to infection in inbred strains of mice. Expl Parasit., 48, 364–74CrossRefGoogle Scholar
  58. Morrison, W. I., Roelants, G. E., Mayor-Withey, K. S. and Murray, M. (1978). Susceptibility of inbred strains of mice to Trypanosoma congolense: correlation with changes in spleen lymphocyte populations. Clin. exp. Immun., 32, 25–40Google Scholar
  59. Murray, P. K., Jennings, F. W., Murray, M. and Urquhart, G. M. (1974). The nature of immunosuppression in Trypanosoma brucei infections in mice. II. The role of the T and B lymphocytes. Immunology, 27, 825–40Google Scholar
  60. Murray, M. and Morrison, W. I. (1981). Trypanotolerance. Its basis and future role in animal production in Africa. In Isotopes and Radiation in Parasitology IV, IAEA, Vienna (in press)Google Scholar
  61. Murray, M., Morrison, W. I., Emery, D. L., Akol, G. W. O., Masake, R. A. and Moloo, S. K. (1980). Pathogenesis of trypanosome infections in cattle. In Isotope and Radiation Research on Animal Diseases and their Vectors, IAEA, Vienna, pp. 15–32Google Scholar
  62. Murray, M., Morrison, W. I., Murray, P. K., Clifford, D. J. and Trail, J. C. M. (1979). Trypanotolerance — a review. Wld Anim. Rev., 31, 2–12Google Scholar
  63. Ogilvie, B. M. and Jones, V. E. (1973). Nippostrongylus braziliensis: A review of immunity and the host/parasite relationship in the rat. Expl Parasit., 29, 138–77CrossRefGoogle Scholar
  64. O’Kelly, J. C. (1980). Parasitism and blood composition in genetically different types of cattle grazing in a tropical environment. Vet. Parasit., 6, 381–90CrossRefGoogle Scholar
  65. Passwell, J. H., Steward, M. W. and Soothill, J. F. (1974). Inter-mouse strain differences in macrophage function and its relationship to antibody responses. Clin. exp. Immun., 17, 159–67Google Scholar
  66. Preston, J. M. and Allonby, E. W. (1978). The influence of breed on the susceptibility of sheep and goats to a single experimental infection of Haemonchus contortus. Vet. Rec., 103, 509–12CrossRefGoogle Scholar
  67. Preston, J. M. and Allonby, E. W. (1979a). The influence of breed on the susceptibility of sheep to Haemonchus contortus infection in Kenya. Res. vet. Sci., 26, 134–9Google Scholar
  68. Preston, J. M. and Allonby, E. W. (1979b). The influence of haemoglobin phenotype on the susceptibility of sheep to Haemonchus contortus infection in Kenya. Res. vet. Sci., 26, 140–4Google Scholar
  69. Radhakrishnan, C. V., Bradley, R. E. and Loggins, P. E. (1972). Host responses of worm-free Florida Native and Rambouillet lambs experimentally infected with Haemonchus contortus. Am. J. vet. Res., 33, 817–33Google Scholar
  70. Rifkin, G. G. and Dobson, C. (1979). Predicting resistance of sheep to Haemonchus contortus infections. Vet. Parasit., 5, 365–78CrossRefGoogle Scholar
  71. Roberts, C. J. and Gray, A. R. (1973a). Studies on trypanosome-resistant cattle. I. The breeding and growth performance of N’dama, Muturu and Zebu cattle maintained under the same conditions of husbandry. Trop. Anim. Hlth Prod., 5, 211–9CrossRefGoogle Scholar
  72. Roberts, C. J. and Gray, A. R. (1973a). Studies on trypanosome resistant cattle. II. The effect of trypanosomiasis on N’dama, Muturu and Zebu cattle. Trop. Anim. Hlth Prod., 5, 220–33CrossRefGoogle Scholar
  73. Ross, J. G. (1970). Genetic differences in the susceptibility of sheep to infection with Trichostrongylus axei: A comparison of Scottish Blackface and Dorset breeds. Res. vet. Sci., 11, 465–8Google Scholar
  74. Ross, J. G., Duncan, J. L. and Halliday, W. G. (1978). Investigation of Haemonchus contortus infections in sheep. Comparison of irradiated larvae and transfer factor treatment. Res. vet. Sci., 27, 258–9Google Scholar
  75. Ross, J. G. and Halliday, W. G. (1978). Investigation of the transfer of immunity to gastrointestinal nematode infections in sheep by leucocyte lysates. Vet. Rec., 102, 240–1CrossRefGoogle Scholar
  76. Ross, J. G., Lee, R. P. and Armour, J. (1959). Haemonchosis in Nigerian Zebu cattle: the influence of genetical factors in resistance. Vet. Rec., 71, 27–31Google Scholar
  77. Rothwell, T. L. W., Dineen, J. K. and Love, R. J. (1971). The role of pharmacologically-active amines in resistance to Trichostrongylus colubriformis in the guinea pig. Immunology, 21, 925–38Google Scholar
  78. Sacks, D. L., Selkirk, M., Ogilvie, B. M. and Askonas, B. A. (1980). Intrinsic immunosuppressive activity of different trypanosome strains varies with parasite virulence. Nature, Lond., 283, 476–8CrossRefGoogle Scholar
  79. Scrivner, L. H. (1964a). Breed resistance to ostertagiasis in sheep. J. Am. vet. med. Ass., 144, 883–7Google Scholar
  80. Scrivner, L. H. (1964b). Transmission of resistance to ovine ostertagiasis. J. Am. vet. med. Ass., 144, 1024–7Google Scholar
  81. Scrivner, L. H. (1967). Genetic resistance to ostertagiasis and haemonchosis in lambs. J. Am. vet. med. Ass., 151, 1443–6Google Scholar
  82. Sinski, E. and Holmes, P. H. (1977). Nippostrongylus brasiliensis: Systemic and local IgA and IgG immunoglobulin responses in parasitised rats. Expl Parasit., 43, 382–9CrossRefGoogle Scholar
  83. Smith, W. D. and Christie, M. G. (1978). Haemonchus contortus: local and serum antibodies in sheep immunised with irradiated larvae. Int. J. Parasit., 8, 219–23CrossRefGoogle Scholar
  84. Smith, W. D. and Christie, M. G. (1979). Haemonchus contortus: some factors influencing the degree of resistance of sheep immunised with attenuated larvae. J. Comp. Path. Ther., 89, 141–50CrossRefGoogle Scholar
  85. Soulsby, E. J. L. and Stewart, D. F. (1960). Serological studies of the self-cure reaction in sheep infected with Haemonchus contortus. Aust. J. agric. Res., 11, 595–603CrossRefGoogle Scholar
  86. Stephen, L. E. (1966). Observations on the resistance of West African N’dama and Zebu cattle to trypanosomiasis following challenge by wild Glossina morsitans from an early age. Ann. trop. Med. Parasit., 60, 230–46Google Scholar
  87. Stewart, D. F. (1950). Studies on resistance of sheep to infestation with Haemonchus contortus and Trichostrongylus spp. and on the immunological reactions of sheep exposed to infestation. II. The antibody response to natural infestation in grazing sheep and the self-cure phenomenon. Aust. J. agric. Res., 1, 427–39CrossRefGoogle Scholar
  88. Stewart, D. F. (1953). Studies on resistance of sheep to infestation with Haemonchus contortus and Trichostrongylus spp. and on the immunological reactions of sheep exposed to infestation. V. The nature of the self-cure phenomenon. Aust. J. agric. Res., 4, 100–17CrossRefGoogle Scholar
  89. Stewart, J. L. (1951). The West African shorthorn cattle: their value to Africa as trypanosomiasis-resistant animals. Vet. Rec., 63, 454–7Google Scholar
  90. Stewart, M. A., Miller, R. F. and Douglas, J. R. (1937). Resistance of sheep of different breeds to infestation by Ostertagia circumcincta. J. agric. Res., 55, 923–30Google Scholar
  91. Terry, R. J., Hudson, K. M., Faghihi-Shirazi, M. and May, D. (1980). Secondary immunodeficiencies associated with African trypanosomiasis. In Isotope and Radiation Research on Animal Diseases and their Vectors, IAEA, Vienna, pp. 133–47Google Scholar
  92. Urquhart, G. M. (1980). Application of immunity in the control of parasitic disease. Vet. Parasit., 6, 217–39CrossRefGoogle Scholar
  93. Vercoe, J. E. (1974). Studies on adaptation of cattle to tropical environments and the role of radioisotopes. In Tracer Techniques in Tropical Animal Production, IAEA, Vienna, pp. 73–87Google Scholar
  94. Vickerman, K. (1978). Antigenic variation in trypanosomes. Nature, Lond., 273, 613–7CrossRefGoogle Scholar
  95. Wakelin, D. (1978). Genetic control of susceptibility and resistance to parasite infection. Adv. Parasit., 16, 219–308CrossRefGoogle Scholar
  96. Wakelin, D. (1981). Mouse models of genetic variation in resistance to helminth parasites (this volume)Google Scholar
  97. Whitlock, J. H. (1955). A study of the inheritance of resistance to trichostrongylidosis in sheep. Cornell Vet., 45, 422–39Google Scholar
  98. Whitlock, J. H. (1958). The inheritance of resistance to trichostrongylidosis in sheep. I. Demonstration of the validity of the phenomenon. Cornell Vet., 48, 127–33Google Scholar
  99. Whitlock, J. H. and Madsen, H. (1958). The inheritance of resistance to trichostrongylidosis in sheep. II. Observations on the genetic mechanisms of trichostrongylidosis. Cornell Vet., 48, 134–45Google Scholar
  100. Willadsen, P. (1980). Immunity to ticks. Adv. Parasit., 18, 293–313CrossRefGoogle Scholar
  101. Windon, R. G. and Dineen, J. K. (1981). The effect of selection of both sire and dam on the response of F1 generation lambs to vaccination with irradiated Trichostrongylus colubriformis larvae. Int. J. Parasit., 11, 11–8CrossRefGoogle Scholar
  102. Windon, R. G., Dineen, J. K. and Kelly, J. D. (1980). The segregation of lambs into ‘responders’ and ‘non-responders’: response to vaccination with irradiated Trichostrongylus colubriformis larvae before weaning. Int. J. Parasit., 10, 65–73CrossRefGoogle Scholar
  103. Yazwinski, T. A., Goode, L., Moncol, D. J., Morgan, G. W. and Linnerud, A. C. (1979). Parasite resistance in straightbred and crossbred Barbados Blackbelly sheep. J. Anim. Sci., 49, 919–26Google Scholar

Copyright information

© The contributors 1982

Authors and Affiliations

  • J. D. Dargie
    • 1
  1. 1.Animal Production and Health SectionJoint FAO/IAEA Division of Isotope and Radiation Applications of Atomic Energy for Food and Agriculture DevelopmentViennaAustria

Personalised recommendations