Skip to main content

Abstract

Although we speak of an ideal crystal as consisting of an extended array of atoms with perfectly regular periodicity in all directions, such perfection is rarely found in the internal structure of real crystals. This is not surprising considering the enormous magnitude of activity that occurs on an atomic scale on the surface of a crystal during growth. Thus, even for a very small growth rate, such as 1 mm per day, about one hundred layers of atoms are deposited on the surface per second. On an atomic scale, the presence of imperfections or defects is thus very common. Moreover, it may be shown by thermodynamic reasoning that crystal defects are to be expected at all temperatures above absolute zero, although the fraction of defects at ordinary temperatures may be negligibly small. Defects in crystals may be of several forms—point defects, line defects and planar defects. Discussion of these defects will occupy most of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Swalin, R.A., Thermodynamics of Solids, New York, John Wiley, 1962, p. 218.

    Google Scholar 

  2. Frank, F.C. ‘Crystal Dislocations—Elementary Concepts and Definitions’, Phil. Mag. 42, 1951, 809.

    Article  Google Scholar 

  3. Read, W.T. Jr., Dislocations in Crystals, New York, McGraw-Hill, 1953, Chapter 2.

    Google Scholar 

  4. Read, W.T. Jr., op. cit., Chapter 3.

    Google Scholar 

  5. Read, W.T. Jr., op. cit., Chapter 7.

    Google Scholar 

  6. Read, W.T. Jr., op. cit., p. 101.

    Google Scholar 

  7. Read, W.T. Jr., op. cit., Chapter 8.

    Google Scholar 

  8. Taylor, G.I, ‘The Mechanism of Plastic Deformation of Crystals’, Proc. Roy. Soc., A 145, 1934, 362.

    Article  Google Scholar 

  9. Orowan, E., ‘Zur Kristallplastizität. III. Über den Mechanismus des Gleitvorganges’, Z. Phys., 89, 1934, 634.

    Article  Google Scholar 

  10. Polanyi, M., ‘Über eine Art Gitterstörung, die eine Kristall Plastisch Machen könnte’, Z. Phys. 89, 1934, 660.

    Article  Google Scholar 

  11. Cottrell, A.H., ‘Theory of Dislocations’, in B. Chalmers (ed.) Progress in Metal Physics, Vol. 1, London, Pergamon Press, 1949, pp. 77–125.

    Google Scholar 

  12. Read, W.T. Jr., op. cit., Chapter 6.

    Google Scholar 

  13. Fiore, N.F. and C.L. Bauer, ‘Binding of Solute Atoms to Dislocations’ in Progress in Materials Science, Vol. 13(2), London, Pergamon Press, 1968, pp. 87–134.

    Google Scholar 

  14. Clark, R. and G.B. Graig, ‘Twinning’ in B. Chalmers (ed.) Progress in Metal Physics, Vol. 3, London, Pergamon Press, 1952, pp. 115–39.

    Google Scholar 

  15. Weinberg, F., ‘Grain Boundaries in Metals’ in B. Chalmers and R. King (eds.), Progress in Metal Physics, Vol. 8, London, Pergamon Press, 1959, pp. 105–46.

    Google Scholar 

  16. Read, W.T. and W. Shockley, ‘Dislocation Models of Crystal Grain Boundaries’, Phys. Rev., 78, 1950, 275.

    Article  Google Scholar 

  17. Mehl, R.F., ‘Diffusion in Solid Metals’, Trans. AIME, 122, 1936, 11.

    Google Scholar 

  18. Huntington, H.B. and F. Seitz, ‘Mechanism for Self Diffusion in Metallic Copper’. Phys. Rev., 61, 1942, 315, 325.

    Article  Google Scholar 

  19. Zener, C., ‘Ring Diffusion in Metals’, Acta Cryst., 3, 1950, 346.

    Article  Google Scholar 

  20. Fick, A., ‘Ueber Diffusion’, Ann. Phys. u Chem. (Lpz.) 94, 1855, 59.

    Article  Google Scholar 

  21. Le Claire, A.D., ‘Diffusion of Metals in Metals’, in B. Chalmers (ed.), Progress in Metal Physics, Vol. 1, London, Pergamon Press, 1949, pp. 306–79.

    Google Scholar 

  22. Smigellskas, A.D. and E.O. Kirkendall, ‘Zinc Diffusion in Alpha Brass’, Metals Tech., 13, 1946, 2071.

    Google Scholar 

  23. Darken, L.S., ‘Diffusion, Mobility and Their Interrelation Through Free Energy in Binary Metallic Systems’, Metals Tech. 15, 1948, 2311.

    Google Scholar 

  24. Grube, G. and Jadele, A., ‘Die Diffusion der Metalle im Festen Zustand’, Zeit. Elektrochem., 38, 1932, 799.

    Google Scholar 

  25. Matano, C., ‘On the Relation Between the Diffusion Coefficients and Concentrations of Solid Metals’, Japan J. Phys. 8, 1933, 109.

    Google Scholar 

  26. Reynolds, J.E., Averbach, B.L., and Cohen M., ‘Self-Diffusion and Interdiffusion in Gold-Nickel Alloys’, Acta Met., 5, 1957, 29.

    Article  Google Scholar 

Further Reading

  • Moffatt, W.G.. Pearsall, G.W. and Wulff, J., The Structure and Properties of Materials. Vol. 1, New Delhi, Wiley Eastern, 1968.

    Google Scholar 

  • Weertman, J. and Weertman, J.R., Elementary Dislocation Theory, New York, Macmillan, 1964.

    Google Scholar 

  • Cottrell, A.H., Dislocations and Plastic Flow in Crystals, Oxford, Clarendon Press, 1961.

    Google Scholar 

  • Nabarro, F.R.N., Theory of Crystal Dislocation, Oxford, Clarendon Press. 1967.

    Google Scholar 

  • Lomer, W.M., ‘Defects in Pure Metals’, in B. Chalmers and R. King (eds.), Progress in Metal Physics, Vol. 8, London, Pergamon Press, 1959, pp. 255–320.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 1979 Manas Chanda

About this chapter

Cite this chapter

Chanda, M. (1979). Crystal Imperfections. In: Science of Engineering Materials. Palgrave, London. https://doi.org/10.1007/978-1-349-06051-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-06051-1_5

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-0-333-31815-7

  • Online ISBN: 978-1-349-06051-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics