Advertisement

State-dependent responses during locomotion

  • S. Rossignol
  • C. Julien
  • L. Gauthier
  • J. P. Lund

Summary

Reflex responses to cutaneous stimulation vary with the phase of locomotion. In high decerebrate cats walking on a treadmill, strong cutaneous stimulation to one hindlimb induces a crossed extension during the contralateral stance and a crossed flexion during the contralateral swing. During ‘fictive’ locomotion in acute spinal cats pretreated with Nialamide and DOPA, essentially the same reversal of crossed reflexes can be observed. However, some responses appear to be ‘wrong’ for the phase of locomotion and in some animals the crossed responses cannot be reversed at all. This was not seen in true locomotion. It is suggested that during actual walking, reflex patterns are largely selected by a central generator for locomotion and that the selection is reinforced by peripheral inputs originating from the moving limbs.

Keywords

Superficial Peroneal Nerve Cutaneous Stimulation Cuff Electrode Fictive Locomotion Extensor Motoneuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andén, N. E., Jukes, M. G. M., Lundberg, A. and Vyklicky, L. (1967). The effect of DOPA on the spinal cord. I: Influence on transmission from primary afferents, Acta physiol. scand., 67, 373–386CrossRefGoogle Scholar
  2. Andersson, O., Forssberg, H., Grillner, S. and Lindquist, M. (1978). Phasic gain control of the transmission in cutaneous reflex pathways to motoneurons during ‘fictive’ locomotion, Brain Res., 149, 503–507CrossRefGoogle Scholar
  3. Andersson, O., Forssberg, H., Grillner, S. and Wallen, P. (1980). Peripheral feedback mechanisms acting on the central pattern generators for locomotion in fish and cat, Can. J. Physiol., Pharmacol., to be publishedGoogle Scholar
  4. Bruggencate, G. Ten and Lundberg, A. (1974). Facilitatory interaction in transmission to motoneurones from vestibulospinal fibres and contralateral primary afferents, Expl Brain Res., 19, 248–270CrossRefGoogle Scholar
  5. Duysens, J. (1977a). Reflex control of locomotion as revealed by stimulation of cutaneous afferents in spontaneously walking premammillary cats, J. Neurophysiol, 40, 737–751Google Scholar
  6. Duysens, J. (1977b). Fluctuations in sensitivity to rhythm resetting effects during the cat’s step cycle, Brain Res., 133, 190–195CrossRefGoogle Scholar
  7. Duysens, J. and Loeb, G. E. (1980). Modulation of ipsi- and contralateral reflex responses in unrestrained walking cats, J. Neurophysiol., to be publishedGoogle Scholar
  8. Duysens, J., Loeb, G. E. and Weston, B. J. (1980). Crossed reflex reversal in the unrestrained walking cat, Brain Res., to be publishedGoogle Scholar
  9. Duysens, J. and Pearson, K. G. (1976). The role of cutaneous afferents from the distal hindlimb in the regulation of the step cycle of thalamic cats, Expl Brain Res., 24, 245–255CrossRefGoogle Scholar
  10. Duysens, J. and Stein, R. B. (1978). Reflexes induced by nerve stimulation in walking cats with implanted cuff electrodes, Expl Brain Res., 32, 213–224CrossRefGoogle Scholar
  11. Eccles, R. M., Holmqvist, B. and Voorhoeve, P. E. (1964). Presynaptic depolarization of cutaneous afferents by volleys in contralateral muscle afferents, Acta physiol. scand., 62, 474–484CrossRefGoogle Scholar
  12. Eccles, J. C., Schmidt, R. F. and Willis, W. D. (1963). Depolarization of the central terminals of cutaneous afferent fibres, J. Neurophysiol., 26, 646–661Google Scholar
  13. von Euler, C. (1980). The contribution of sensory inputs to the pattern generation of breathing, Can. J. Physiol., Pharmacol., to be publishedGoogle Scholar
  14. Evdokimov, S. A. and Safyants, V. I. (1971). Synaptic effects of contralateral somatic afferents on spinal motoneurons, Neurophysiol., 3, 316–321CrossRefGoogle Scholar
  15. Forssberg, H. (1979). Stumbling corrective reaction: A phase dependent compensatory reaction during locomotion, J. Neurophysiol., 42, 936–953Google Scholar
  16. Forssberg, H. (1980). Phasic gating of cutaneous reflexes during locomotion. This publicationGoogle Scholar
  17. Forssberg, H., Grillner, S. and Rossignol, S. (1975). Phase-dependent reflex reversal during walking in chronic spinal cats, Brain Res., 85, 103–107CrossRefGoogle Scholar
  18. Forssberg, H., Grillner, S. and Rossignol, S. (1977). Phasic gain control of reflexes from the dorsum of the paw during spinal locomotion, Brain Res., 132, 121–139CrossRefGoogle Scholar
  19. Forssberg, H., Grillner, S., Rossignol, S. and Wallen, P. (1976). Phasic control of reflexes during locomotion in vertebrates. In Neural Control of Locomotion (eds R. M. Herman, S. Grillner, P. S. G. Stein and D. G. Stuart), New York, Plenum Press, 647–674CrossRefGoogle Scholar
  20. Gauthier, L. and Rossignol, S. (1980). Contralateral hindlimb responses to cutaneous stimulation during locomotion in high decerebrate cats, Brain Res., to be publishedGoogle Scholar
  21. Graham Brown, T. (1911). Studies in the physiology of the nervous system. VIII: Neural balance and reflex reversal with a note on progression in the decerebrate guinea pig, Q. Jl expl Physiol., 4, 273–288CrossRefGoogle Scholar
  22. Graham Brown, T. (1914a). On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system, J. Physiol., 58, 18–46CrossRefGoogle Scholar
  23. Graham Brown, T. (1914b). Studies in the physiology of the nervous system. XVIII: The successive effects of the compounding of reflexes where the ‘pure’ reactions are abnormal (ipsilateral extension or contralateral flexion) in decerebrate preparations, Q. Jl expl Physiol., 7, 383–405CrossRefGoogle Scholar
  24. Graham Brown, T. and Sherrington, C. S. (1912). The rule of reflex response in the limb reflexes of the mammal and its exceptions, J. Physiol., Lond., 44, 125–130CrossRefGoogle Scholar
  25. Grillner, S. (1973). Locomotion in the spinal cat. In Control of Posture and Locomotion (eds R. B. Stein, K. G. Pearson, R. S. Smith and J. B. Redford), New York, Plenum Press, 515–533CrossRefGoogle Scholar
  26. Grillner, S. (1979). Interaction between central and peripheral mechanisms in the control of locomotion, Prog. Brain Res., 50, 227–235CrossRefGoogle Scholar
  27. Grillner, S. and Rossignol, S. (1978). Contralateral reflex reversal controlled by limb position in the acute spinal cat injected with Clonidine i.v., Brain Res., 144, 411–414CrossRefGoogle Scholar
  28. Grillner, S., Rossignol, S. and Wallen, P. (1977). The adaptation of a reflex response to the ongoing phase of locomotion in fish, Expl Brain Res, 30, 1–11CrossRefGoogle Scholar
  29. Grillner, S. and Shik, M. L. (1973). On the descending control of the lumbosacral spinal cord from the ‘mesencephalic locomotor region’. Acta physiol. scand., 87, 320–333CrossRefGoogle Scholar
  30. Grillner, S. and Zangger, P. (1979). On the central generation of locomotion in the low spinal cat, Expl Brain Res., 34, 241–261CrossRefGoogle Scholar
  31. Jankowska, E., Jukes, M. G. M., Lund, S. and Lundberg, A. (1967). The effect of DOPA on the spinal cord. VI: Half-centre organization of interneurons transmitting effects from the flexor reflex afferents. Acta physiol. scand., 70, 389–402CrossRefGoogle Scholar
  32. Loeb, G. E. (1980). Somatosensory unit input to the spinal cord during normal walking, Can. J. Physiol., Pharmacol., to be publishedGoogle Scholar
  33. Lund, J. and Rossignol, S. (1980a). Dissociation of the amplitude of the jaw opening reflex and the masticatory cycle, Proc. XXVIII Int. Physiol. Congr., to be publishedGoogle Scholar
  34. Lund, J. and Rossignol, S. (1980b). Modulation of the amplitude of the digastric jaw opening reflex during the masticatory cycle, Neurosci., to be publishedGoogle Scholar
  35. Lund, J., Rossignol, S. and Murakami, T. (1980). Interactions between the jaw opening reflex and mastication, Can. J. Physiol., Pharmacol., to be publishedGoogle Scholar
  36. Magnus, R. (1909a). Zur Regelung der Bewegungen durch das Zentralnervensystem. Mitteilung I, Pflügers Arch. ges. Physiol., 130, 81–86Google Scholar
  37. Magnus, R. (1909b). Zur Regelung der Bewegungen durch das Zentralnervensystem. Mitteilung II, Pflügers Arch. ges. Physiol., 132, 253–269CrossRefGoogle Scholar
  38. Magnus, R. (1910). Zur Regelung der Bewegungen durch das Zentralnervensystem. Mitteilung III, Pflügers Arch. ges. Physiol., 134, 545–583CrossRefGoogle Scholar
  39. Magnus, R. (1924). Körperstellung, Berlin, Springer, 24–49CrossRefGoogle Scholar
  40. Miller, S., Ruit, J. B. and van der Meche, F. G. A. (1977). Reversal of sign of long spinal reflexes dependent on the phase of the step cycle in the high decerebrate cat, Brain Res., 128, 447–459CrossRefGoogle Scholar
  41. Prochazka, A., Sontag, K. H. and Wand, P. (1978). Motor reactions to perturbations of gait: proprioceptive and somesthetic involvement, Neurosci. Lett., 7, 35–39CrossRefGoogle Scholar
  42. Prochazka, A., Westerman, R. A. and Ziccone, S. P. (1977). Ia afferent activity during a variety of voluntary movements in the cat, J. Physiol., Lond., 268, 423–448CrossRefGoogle Scholar
  43. Ranson, S. W. and Hinsey, J. C. (1930). Reflexes in the hindlimbs of cats after transection of the spinal cord at various levels, Amer. J. Physiol., 94, 471–495Google Scholar
  44. Rossignol, S. and Gauthier, L. (1978). Patterns of contralateral limb responses to nociceptive stimuli during locomotion, Soc. Neurosci. Abstr., 4, 304Google Scholar
  45. Rossignol, S. and Gauthier, L. (1980). An analysis of mechanisms controlling the reversal of crossed spinal reflexes, Brain Res., 182, 31–45CrossRefGoogle Scholar
  46. Schomburg, E. D. and Behrends, H. B. (1978). Phasic control of the transmission in the excitatory and inhibitory reflex pathway from cutaneous afferents to motoneurones during fictive locomotion in cats, Neurosci. Lett., 8, 277–282CrossRefGoogle Scholar
  47. Schomburg, E. D., Roesler, J. and Meinck, H. M. (1977). Phase dependent transmission in the excitatory propriospinal reflex pathways from forelimb afferents to lumbar motoneurones during fictive locomotion, Neurosci. Lett., 4, 249–252CrossRefGoogle Scholar
  48. Sherrington, C. S. (1900). On the innervation of antagonistic muscles. Sixth notes, Proc. R. Soc. B., 67, 66–67Google Scholar
  49. Sherrington, C. S. (1910). Flexion-reflex of the limb, crossed extension reflex, and reflex stepping and standing. J. Physiol., Lond., 40, 28–121CrossRefGoogle Scholar
  50. Shik, M. L., Severin, F. V. and Orlovsky, G. N. (1966). Control of walking and running by means of electrical stimulation of the mid-brain, Biofizika, 11, 659–666Google Scholar
  51. von Uexküll, J. (1904). Die ersten Ursachen des Rhythmus in der Tierreihe, Ergebn. Physiol., 3, 1–11CrossRefGoogle Scholar
  52. Wand, P., Prochazka, A. and Sontag, K. H. (1980). Neuromuscular responses to gait perturbations in freely moving cats, Expl Brain Res., 38, 109–114CrossRefGoogle Scholar
  53. Wilson, V. J. (1963). Ipsilateral excitation of extensor mononeurones, Nature, Lond., 198, 290–291CrossRefGoogle Scholar

Copyright information

© The contributors 1981

Authors and Affiliations

  • S. Rossignol
    • 1
  • C. Julien
    • 1
  • L. Gauthier
    • 1
  • J. P. Lund
    • 1
  1. 1.Centre de Recherche en Sciences NeurologiquesUniversity of MontrealCanada

Personalised recommendations