Relationships of γ-Endorphin in Physical Dependence

  • E. L. Way


There is mounting evidence that many opiate-like peptides do not always exhibit some of the classic signs of opiate action possessed by morphine and its alkaloidal agonist surrogates. The explanation offered by most investigators is that a multiplicity of opiate receptors exist with varying degrees of affinity for various opioid agonists. This variation in activity extends not only to different organs and tissues but also to different sites within the brain itself. Furthermore, there is considerable species and strain difference in this regard. This obviously means that many of the effects noted with the opiate-like peptides in experimental animals cannot always be extrapolated for accurate prediction of pharmacological effects in humans.


Synaptic Vesicle Physical Dependence Heroin Addict Tolerance Development Synaptic Plasma Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bradbury, A. F., Smyth, D. G. & Snell, C. R. (1976). C fragment of lipotropin has a high affinity for brain opiate receptors. Nature, 260, 793–795.CrossRefGoogle Scholar
  2. Cardenas, H. L. & Ross, D. H. (1976). Calcium depletion of synaptosomes after morphine treatment. Brit. J. Pharmac., 57, 521–526.CrossRefGoogle Scholar
  3. Catlin, D. H., Gorelick, D. A., Gerner, R. H., Hui, K. K. & Li, C. H. (1980). Clinical effects of γ-endorphin infusions. Adv. Biochem. Psychopharmac, in press.Google Scholar
  4. Celsen, B. & Kuschinsky, K. (1974). Effects of morphine on kinetics of [14C]-dopamine in rat striatal slices. Naunyn Schmiedeberg’s Arch. Pharmac., 284, 159–165.CrossRefGoogle Scholar
  5. Cox, B. M., Goldstein, A. & Li, C. H. (1976). Opioid activity of a peptide γ-lipotropin (61–91) derived from γ-lipotropin. Proc. Nat. Acad. Sci. USA, 73, 1821–1823.PubMedCentralCrossRefPubMedGoogle Scholar
  6. Guerrero-Munoz, F., Cerreta, K. V., Guerrero, M. L. & Way, E. L. (1979a). Effect of morphine on synaptosomal Ca++ uptake. J. Pharmac. exp. Ther., 209, 132–136.Google Scholar
  7. Guerrero-Munoz, F., Guerrero, M. & Way, E. L. (1979b). Effect of morphine on calcium uptake in lysed synaptosomes. J. Pharmac. exp. Then, 211, 370–374.Google Scholar
  8. Guerrero-Munoz, F., Guerrero, M. L. & Way, E. L. (1979c). Effect of γ-endorphin on Ca++ uptake in the brain. Science, 206, 89–91.CrossRefPubMedGoogle Scholar
  9. Harris, R. A., Iwamoto, E. T., Loh, H. H. & Way, E. L. (1975b). Analgetic effects of lanthanum: cross tolerance with morphine. Brain Res., 100, 221–225.CrossRefPubMedGoogle Scholar
  10. Harris, R. A., Loh, H. H. & Way, E. L. (1975a). Effects of divalent cations, cation chelators and an ionophore on morphine analgesia and tolerance. J. Pharmac. exp. Ther., 195, 488–498.Google Scholar
  11. Harris, R. A., Loh, H. H. & Way, E. L. (1976). Antinociceptive effects of lanthanum and cerium in non-tolerant and morphine tolerant-dependent animals. J. Pharmac. exp. Ther., 196, 288–297.Google Scholar
  12. Harris, R. A., Yamamoto, H., Loh, H. H. & Way, E. L. (1977). Discrete changes in brain calcium with morphine analgesia, tolerance-dependence, and abstinence. Life Sci, 20, 501–506.CrossRefPubMedGoogle Scholar
  13. Henderson, G., Hughes, J. & Kosterlitz, H. W. (1975). The effects of morphine on the release of noradrenaline from the cat isolated nicotating membrane and the guinea pig ileum myoenteric plexus longitudinal muscle preparation. Brit. J. Pharmac, 53, 505–512.CrossRefGoogle Scholar
  14. Hu, J., Huidobro-Toro, J. & Way, E. L. (1980). Calcium antagonism of opiate action in the non-tolerant and tolerant guinea pig ileum. In Endogenous and Exogenous Opiate Agonists and Antagonists ed. Way, E. L., pp. 263–266. Oxford: Pergamon Press.CrossRefGoogle Scholar
  15. Huidobro-Toro, J., Li, C. H. & Way, E. L. (1978). Single-dose tolerance to antinociception, and dependence on γ-endorphin in mice. Eur. J. Pharmac, 52, 179–190.CrossRefGoogle Scholar
  16. Huidobro-Toro, J. & Way, E. L. (1979). Studies on the hyperthermic response of γ-endorphin in mice. J. Pharmac. exp. Ther., 211, 50–58.Google Scholar
  17. Iwamoto, T., Harris, R. A., Loh, H. H. & Way, E. L. (1978). Antinociceptive responses after microinjection of morphine or lanthanum in discrete rat brain sites. J. Pharmac. exp. Ther., 206, 46–55.Google Scholar
  18. Jhamandas, K., Sawynok, J. & Sutak, M. (1977). Enkephalin effects on release of brain acetylcholine. Nature, 269, 433–434.CrossRefPubMedGoogle Scholar
  19. Kolb, L. & Himmelsbach, C. K. (1938). Clinical studies of drug addiction, physical dependence, withdrawal and recovery. Ann. J. Psychol., 94, 759.Google Scholar
  20. Li, C. H. & Chung, D. (1976). Isolation and structure of an untriakontapeptide with opiate activity from camel pituitary glands. Proc. Nat. Acad. Sci. USA, 73, 1145–1148.PubMedCentralCrossRefPubMedGoogle Scholar
  21. Loh, H. H., Brase, D. A., Sampath-Khanna, S., Mar, J. & Way, E. L. (1976a). γ-endorphin in vitro inhibition of striatal dopamine release. Nature, 264, 367–368.CrossRefGoogle Scholar
  22. Loh, H. H., Tseng, L. F., Wei, E. & Li, C. H. (1976b). γ-endorphin is a potent analgesic agent. Proc. Nat. Acad. Sci. USA, 73, 2895–2898.PubMedCentralCrossRefPubMedGoogle Scholar
  23. Paton, W. D. M. (1957). The action of morphine and related substances on contraction and on acetylcholine output of co-axially stimulated guinea pig ileum. Brit. J. Pharmac, 12, 119–127.Google Scholar
  24. Quock, C. P., Cheng, J., Chan, S. C. & Way, E. L. (1968). The abstinence syndrome in long-term high dosage narcotic addiction. Brit. J. Addict., 63, 261–270.CrossRefGoogle Scholar
  25. Schauman, W. (1957). Inhibition by morphine of the release of acetylcholine from the intestineof the guinea pig. Brit. J. Pharmac, 12, 115–118.Google Scholar
  26. Schmidt, W. K. & Way, E. L. (1980). Hyperalgesic effects of divalent cations and antinociceptive effects of a calcium chelator in naive and morphine-dependent mice. J. Pharmac. exp. Ther., 212, 22–27.Google Scholar
  27. Su, C. Y., Lin, C. S., Peng, C., Cheng, C. S., Loh, H. H, Li, C. E. & Way E. L. (1980). Suppression of morphine abstinence in heroin addicts by γ-endorphin. In Proceedings Symposium on Regulation and Function of Neutral Peptides, Gardone Riviera, Brescia, in press.Google Scholar
  28. Su, C. Y., Lin, S. H, Wang, Y. T., Li, C. H., Hung, L. H., Lin, C. S. & Lin, B. C. (1978). Effects of γ-endorphin on narcotic abstinence syndrome in man. Formosan med. J., 77, 133–142.Google Scholar
  29. Tseng, L. F., Loh, H. H. & Li. C. H. (1976). γ-endorphin. Cross tolerance to and cross physical dependence on morphine. Proc. Nat. Acad. Sci. USA, 73, 4187–4189.PubMedCentralCrossRefPubMedGoogle Scholar
  30. Wei, E. & Loh, H. H. (1976). Physical dependence on opiate-like peptides. Science, 197, 1262–1263.CrossRefGoogle Scholar
  31. Wei, E. T., Tseng, F., Loh, H. H. & Li, C. H. (1977). Comparison of the behavioral effects of γ-endorphin and enkephalin analogs. Life Sci, 21, 321–328.CrossRefPubMedGoogle Scholar
  32. Yamamoto, H, Harris, R. A., Loh, H. H. & Way, E. L. (1977). Effects of morphine tolerance and dependence on Mg++-dependent ATPase activity of synaptic vesicles. Life Sci. 20, 1533–1540.CrossRefPubMedGoogle Scholar
  33. Yamamoto, H., Harris, R. A., Loh, H. H. & Way, E. L. (1978). Effects of acute and chronic treatments on calcium localization and binding in brain. J. Pharmac. exp. Ther 205. 255–264.Google Scholar

Copyright information

© The contributors 1980

Authors and Affiliations

  • E. L. Way
    • 1
  1. 1.Department of Pharmacology, School of MedicineUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations