Renal Elimination of Drugs at Various Ages

  • A. H. Neims

Abstract

The renal excretion of drugs and/or their active or inactive metabolites can involve the processes of glomerular filtration, active or passive tubular secretion, and/or active or passive tubular reabsorption (Weiner, 1971). Hydrophilic compounds, like the polycationic aminoglycosides, experience little passive reabsorption; their urine/plasma concentration ratios approximate 100, and their clearance is similar to that of inulin or creatinine. Lipophilic compounds, like caffeine, are filtered, but reabsorbed so rapidly that their urine/plasma concentration ratios approach 1 (Aldridge, Aranda & Neims, 1979). Under these circumstances renal excretion is most inefficient with clearance only approximating urine flow rate. Several organic acids such as penicillin, and organic bases such as procainamide, are secreted actively by the tubule. This presentation concerns the relationship between the various processes of renal excretion and age. There is no doubt that the impairment of the renal excretion of drugs at the two extremes of age has therapeutic and toxicological implications (Morselli, 1976; Kampmann & Molholm Hansen, 1979; Schmucker, 1979). My purpose is not to present original research, but rather to explore the issue from the perspective of someone interested in development in general.

Keywords

Creatinine Penicillin Caffeine Mannitol Palmitate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldridge, A., Aranda, J. V. & Neims, A. H. (1979). Caffeine metabolism in the newborn. Clin. Pharmac. Ther., 25, 477–453.Google Scholar
  2. Altman, P. L. & Dittmer, D. S. (1974). Biological Data Book, Volume III. Bethesda: Federation of American Societies for Experimental Biology.Google Scholar
  3. Braunlich, H. (1977). Kidney development: drug elimination mechanisms. In Drug Disposition During Development, ed. Morselli, P. L., pp. 89–100. New York: Spectrum.Google Scholar
  4. Bricker, N. S., Morrin, P. A. F. & Kime, S. W., Jr. (1960). The pathologic physiology of chronic Bright’s disease-an exposition of the ‘intact nephron hypothesis’. Am. J. Med., 28, 77–98.CrossRefPubMedGoogle Scholar
  5. Davies, D. F. & Shock, N. W. (1950). Age changes in glomerular filtration rate, effective renal plasma flow, and tubular excretory capacity in adult males. J. clin. Invest., 29, 496–507.PubMedCentralCrossRefPubMedGoogle Scholar
  6. Drayer, D., Camacho, M., Kluger, J. & Reidenberg, M. (1980). Effect of age on the renal excretion by man of procainamide and its active metabolite N-acetylprocainamide. Abstracts of the First World Conference on Clinical Pharmacology & Therapeutics (Abstract 0348). London.Google Scholar
  7. Gladtke, E. & Heimann, G. (1975). The rate of development of elimination functions in kidney and liver of young infants. In Basic and Therapeutic Aspects of Perinatal Pharmacology, ed. Morselli, P. L., Garattini, S. & Sereni, F., pp. 393–403. New York: Raven.Google Scholar
  8. Hewitt, W. R. & Hook, J. B. (1978). Alteration of renal cortical palmitate utilization and p-aminohippurate (PAH) accumulation after penicillin treatment of neonatal rabbits. J. Pharmac. exp. Ther., 207, 726–736.Google Scholar
  9. Hirsch, G. H. & Hook, J. B. (1970). Maturation of renal organic acid transport: substrate stimulation by penicillin and p-aminohippurate (PAH). J. Pharmac. exp. Ther., 171, 103–108.Google Scholar
  10. Kampmann, J. P. & Molholm Hansen, J. E. (1979). Renal excretion of drugs. In Drugs and the Elderly, ed. Crook, J. & Stevenson, I. H, pp. 77–87. London: Macmillan.CrossRefGoogle Scholar
  11. Kampmann, J., Molholm Hansen, J., Siersbaek-Nielsen, K. & Laursen, H. (1972). Effect of some drugs on penicillin half-life in blood. Clin. Pharmac. Ther., 13, 516–519.Google Scholar
  12. Krauer, B. (1975). The development of diurnal variation in drug kinetics in the human infant. In Basic and Therapeutic Aspects of Perinatal Pharmacology, ed. Morselli, P. L., Garattini, S. & Sereni, F., pp. 347–356. New York: Raven.Google Scholar
  13. Lewis, W. H. & Alving, A. S. (1938). Changes with age in the renal function in adult men. Am. J. Physiol., 123, 500–515.Google Scholar
  14. Lindeman, R. (1975). Age changes in renal function. In The Physiology and Pathology of Human Aging, ed. Goldman, R. & Rockstein, M., pp. 19–38. New York: Academic.Google Scholar
  15. Loggie, J. M. H., KJeinman, L. I. & Van Maanen, E. F. (1975). Renal function and diuretic therapy in infants and children. Part I. J. Pediat., 86, 485–496.CrossRefPubMedGoogle Scholar
  16. McCracken, G. H. (1974). Pharmacologic basis for antimicrobial therapy in newborn infants. Am. J. Dis. Child., 28, 407–419.Google Scholar
  17. Milner, R. D. G., Milner, G. R. & Lancaster, D. (1979). Tissue gentamicin concentrations in the newborn and adult rat. Pediat. Res., 161–166.Google Scholar
  18. Morselli, P. L. (1976). Clinical pharmacokinetics in neonates. Clin. Pharmacokin., 1, 81–98.CrossRefGoogle Scholar
  19. Myers, M. G., Roberts, R. J. & Mirhij, N. J. (1977). Effects of gestational age, birth weight, and hypoxemia on pharmacokinetics of amikacin in serum of infants. Antimicrobial Agents & Chemoth., 11, 1027–1032.CrossRefGoogle Scholar
  20. Neims, A. H., Aranda, J. V. & Loughnan, P. M. (1977). Principles of neonatal pharmacology. In Diseases of the Newborn, ed. Schaffer, A. J. & Avery, M. E., pp. 1020–1034. Philadelphia: Saunders.Google Scholar
  21. Rane, A. & Wilson, J. T. (1976). Clinical pharmacokinetics in infants and children. Clin. Pharmacokin., 1, 2–24.CrossRefGoogle Scholar
  22. Schmucker, D. L. (1979). Age-related changes in drug disposition. Pharmac. Rev., 30, 445–456.Google Scholar
  23. Schreiter, G (1966). Neure physiologische und klinische Aspekte der Nierenfunktion bei Fruhgeborenen. Dtsch. Ges. Wesen., 21, 433–441.Google Scholar
  24. Szefler, S. J., Wynn, R. J., Clarke, D. F., Buckwald, S., Shen, D. & Schentag, J. J. (1980). Relationship of gentamicin serum concentrations to gestational age in preterm and term neonates. J. Pediat, 97, 312–315.CrossRefPubMedGoogle Scholar
  25. Tavani, N., Jr., Calcagno, P., Zimmet, S., Flamenbaum, W., Eisner, G & Jose, P. (1980). Ontogeny of single nephron filtration distribution in canine puppies. Pediat. Res., 14, 799–802.CrossRefPubMedGoogle Scholar
  26. Weil, W. B. (1955). The evaluation of renal function in infancy and childhood. Am. J. med. Sci., 229, 678–692.CrossRefPubMedGoogle Scholar
  27. Weiner, I. M. (1971). Excretion of drugs by the kidney. In Handbook of Experimental Pharmacology, Vol. XXVIII, pp. 328–353. Berlin: Springer-Verlag.Google Scholar
  28. Winberg, J. (1959). The 24-hour true endogenous creatinine clearance in infants and children without renal disease. Acta Paediat., 48, 443–452.Google Scholar

Copyright information

© The contributors 1980

Authors and Affiliations

  • A. H. Neims
    • 1
  1. 1.Departments of Pharmacology & Therapeutics, and Department of PediatricsUniversity of Florida College of MedicineGainesvilleUSA

Personalised recommendations