Skip to main content
  • 137 Accesses

Abstract

The vast literature on dopamine which now exists attests to the pre-eminence it has achieved among the monoamines, since its first recognition as a neurotransmitter in the late 1950’s (Carlsson, 1959). Much of our latter-day interest has been sustained by the finding that L-dopa administration to parkinsonian patients, resulting in dopamine generation in the central nervous system, gives rise to substantial therapeutic benefit (Cotzias et al., 1967). More recently, attention has focussed on the possible role of the amine in schizophrenia (Randrup and Munkvad, 1968). Despite this preoccupation with dopamine, certain metabolic pathways connected with its generation or disposition have still been underinvestigated, particularly in man. This paper sets out to provide a brief evaluation of the importance of four of these pathways in the human brain, L-aromatic amino acid decarboxylase, L-dopa transaminase, monoamine oxidase and phenolsulphotransferase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abercrombie, D.M. and Martin, D.L. (1980). Inhibition of pyridoxal kinase by the pyridoxal-γ-aminobutyrate imine. J.biol.Chem., 255, 79–84.

    Google Scholar 

  • Alabaster, V.A. and Bakhle, Y.S. (1976). Release of smooth muscle-contracting substances from isolated perfused lungs. Eur.J. Pharmac., 35, 349–360.

    Article  Google Scholar 

  • Anderson, R.J. and Weinshilboum, R.M. (1979). Phenolsulphotransferase: enzyme activity and endogenous inhibitors in the human erythrocyte. J.Lab.Clin.Med., 94, 158–171.

    Google Scholar 

  • Carlsson, A. (1959). The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacol. Rev., 11, 490–493.

    Google Scholar 

  • Cotzias, G.C., van Woert, M.H. and Schiffer, L.M. (1967). Aromatic amino acids and modification of Parkinsonism. New Engl.J.Med., 276, 374–379.

    Article  Google Scholar 

  • Crow, T.J., Baker, H.F., Cross, A.J., Joseph, M.H., Lofthouse, R., Longden, A., Owen, F., Riley, G.J., Glover, V. and Killpack, W.S. (1979). Monoamine mechanisms in chronic schizophrenia: postmortem neurochemical findings. Br.J.Psychiat., 134, 249–256.

    Article  Google Scholar 

  • Donnelly, C.H. and Murphy, D.L. (1977). Substrate and inhibitor-related characteristics of human platelet monoamine oxidase. Biochem.Pharmac., 26, 853–858.

    Article  Google Scholar 

  • Duvoisin, R.C., Yahr, M.D. and Cote, L.D. (1969). Pyridoxine reversal of L-dopa effects in Parkinsonism. Trans.Amer.neurol.Ass., 94, 81–82.

    Google Scholar 

  • Egashira, T. (1976). Studies on monoamine oxidase. XVIII. Enzymic properties of placental monoamine oxidase. Jap.J.Pharmacol., 26, 493–500.

    Article  Google Scholar 

  • Fonnum, F., Haavaldsen, R. and Tangen, O. (1964). Transamination of aromatic amino acids in rat brain. J.Neurochem., 11, 109–118.

    Article  Google Scholar 

  • Fonnum, F. and Larsen, K. (1965). Purification and properties of dihydroxyphenylalanine transaminase from guinea pig brain. J.Neurochem., 12, 589–598.

    Article  Google Scholar 

  • Glover, V., Elsworth, J.D. and Sandler, M. (1980a). Dopamine oxidation and its inhibition by (-)-deprenyl in man. J.neural Transmiss., Suppl.16, 163–172.

    Google Scholar 

  • Glover, V., Sandler, M., Owen, F. and Riley, G.J. (1977). Dopamine is a monoamine oxidase B substrate in man. Nature, Lond., 265, 80–81.

    Article  Google Scholar 

  • Glover, V., Sandler, M., Rein, G., Ward, C. and Stern, G. (1980b). Monoamine oxidase and phenolsulphotransferase in Parkinson’s disease, In Progress in Parkinson’s Disease, (eds. F.Clifford Rose and R.Capildeo), Pitman Medical, London, in press.

    Google Scholar 

  • Hart, R.F., Renskers, K.J., Nelson, E.B. and Roth, J.A. (1979). Localization and characterization of phenol sulfotransferase in human platelets. Life Sci., 24, 125–130.

    Article  Google Scholar 

  • Johnston, J.P. (1968). Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem.Pharmac., 17, 1285–1297.

    Article  Google Scholar 

  • Lloyd, K. and Hornykiewicz, O. (1970a). Occurrence and distribution of L-DOPA decarboxylase in the human brain. Brain Res., 22, 426–428.

    Article  Google Scholar 

  • Lloyd, K. and Hornykiewicz, O. (1970b). Parkinson’s disease: activity of L-dopa decarboxylase in discrete brain regions. Science, 170, 1212–1213.

    Article  Google Scholar 

  • Randrup, A. and Munkvad, I. (1968). Behavioural stereotypes induced by pharmacological agents. Pharmakopsychiat.Neuro-Psychopharmak., 1, 18–26.

    Article  Google Scholar 

  • Rein, G., Glover, V. and Sandler, M. Sulphate conjugation of biologically active monoamines and their metabolites by human platelet phenolsulphotransferase. Submitted for publication.

    Google Scholar 

  • Renskers, K.J., Feor, K.D. and Roth, J.A. (1980). Sulfation of dopamine and other biogenic amines by human brain phenol sulfotransferase. J.Neurochem., 34, 1362–1368.

    Article  Google Scholar 

  • Reveley, M.A., Glover, V., Sandler, M. and Spokes, E.G. (1980). Brain monoamine oxidase activity in schizophrenics and controls: relationship to diagnosis, sex, and age. Submitted for publication.

    Google Scholar 

  • Robins, E., Robins, J.M., Croniger, A.B., Moses, S.G., Spencer, S.J. and Hudgens, R.M. (1967). The low level of 5-hydroxytryptophan decarboxylase in human brain. Biochem.Med., 1, 240–251.

    Article  Google Scholar 

  • Sacks, W. (1961). A cerebral decarboxylase for 5-hydroxytryptophane in humans. J.Appl.Physiol., 16, 1050–1054.

    Google Scholar 

  • Sacks, W., Vogel, W.H., Nagatsu, T., Lloyd, K.G. and Sandler, M. (1979). Is there DOPA decarboxylase in human brain? In Catecholamines: Basic and Clinical Frontiers, (eds.E.Usdi, I.I.J.Kopin and J.Barchas), Pergamon Press, New York, pp.127–131.

    Chapter  Google Scholar 

  • Sandler, M. (1972). Catecholamine synthesis and metabolism in man (with special reference to parkinsonism). In Handbook of Experimental Pharmacology, Vol.33, Catecholamines, (eds.H.Blaschko and E.Muscholl), Springer, Berlin, pp.845–899.

    Google Scholar 

  • Sandler, M. (1979). Is there dopa decarboxylase in human brain? In Catecholamines: Basic and Clinical Frontiers, (eds.E.Usdin, I.J.Kopin and J.Barchas), Pergamon Press, New York, pp.130–131.

    Google Scholar 

  • Schildkraut, J.J., Herzog, J.M., Orsulak, P.J., Edelman, S.E., Shein, H.M. and Frazier, S.H. (1976). Reduced platelet monoamine oxidase activity in a subgroup of schizophrenia patients. Am.J. Psychiat., 133, 438–440.

    Article  Google Scholar 

  • Schwartz, M.A., Aikens, A.M. and Wyatt, R.J. (1974). Monoamine oxidase activity in brains from schizophrenics and mentally normal individuals. Psychopharmacologia, 38, 319–328.

    Article  Google Scholar 

  • Tangen, O., Fonnum, F. and Haavaldsen, R. (1965). Separation and purification of aromatic amino acid transaminases from rat brain. Biochim.Biophys.Acta, 96, 82–90.

    Article  Google Scholar 

  • Usdin, E., Kopin, I.J. and Barchas, J. (1979). Eds. Catecholamines: Basic and Clinical Frontiers, Pergamon Press, New York.

    Google Scholar 

  • Vogel, W.H., Orfei, V. and Century, B. (1969). Activities of enzymes involved in the formation and destruction of biogenic amines in various areas of human brain. J.Pharmacol.exp.Ther., 165, 196–203.

    Google Scholar 

  • Waldmeier, P.C., Delini-Stula, A. and Maitre, L. (1976). Preferential deamination of dopamine by an A type monoamine oxidase in rat brain. Naunyn-Schmiedeberg Arch.Pharmac., 292, 9–14.

    Article  Google Scholar 

  • Wyatt, R.J., Erdelyi, E., Schwartz, H., Herman, M. and Barchas, J.D. (1978). Difficulties in comparing catecholamine-related enzymes from the brains of schizophrenics and controls. Biol.Psychiat., 13, 317–334.

    Google Scholar 

  • Wyatt, R.J., Potkin, S.G. and Murphy, D.L. (1979). Platelet monoamine oxidase activity in schizophrenia: a review of the data. Am.J.Psychiat., 136, 377–385.

    Google Scholar 

  • Yang, H-Y.T. and Neff, N.H. (1974). The monoamine oxidases of brain: selective inhibition with drugs and the consequences for the metabolism of biogenic amines. J.Pharmac.exp.Ther. 189, 733–740.

    Google Scholar 

  • Youdim, M.B.H. (1973). Multiple forms of mitochondrial monoamine oxidase. Br.Med.Bull., 29, 120–122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1981 The Contributors

About this chapter

Cite this chapter

Sandler, M., Glover, V., Reveley, M.A., Lax, P., Rein, G. (1981). Dopamine Metabolism in Human Brain. In: Riederer, P., Usdin, E. (eds) Transmitter Biochemistry of Human Brain Tissue. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-05932-4_9

Download citation

Publish with us

Policies and ethics