Skip to main content

Active metabolites of phenothiazine drugs

  • Chapter
Clinical Pharmacology in Psychiatry

Abstract

Many of the psychotropic drugs have one or more active metabolites which may significantly contribute to therapeutic and toxic effects in patients. The ratio between the blood concentrations of metabolites and the parent drug may vary largely between individuals and the active metabolites should, therefore, be measured (in addition to the parent drug) by blood level monitoring. This should be done also in studies of the relationship between blood drug concentrations and clinical effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Afifi, A.-H. M. and Way, E. L. (1968). Studies on the biologic disposition of methotrimeprazine. J. Pharmac. exp. Then., 160, 397–406

    CAS  Google Scholar 

  • Alfredsson, G., Wode-Helgodt, B. and Sedvall, G. (1976). A mass fragmentographic method for the determination of chlorpromazine and two of its active metabolites in human plasma and CSF. Psychopharmacology, 48, 123–31

    Article  PubMed  CAS  Google Scholar 

  • Alfredsson, G., Wiesel, F.-A. and Skett, P. (1977). Levels of chlorpromazine and its active metabolites in rat brain and the relationship to central monoamine metabolism and prolactin secretion. Psychopharmacology, 53, 13–18

    Article  PubMed  CAS  Google Scholar 

  • Allgén, L.-G., Hellström, L. and Sant’Orp, G. J. (1963). On the metabolism and elimination of the psychotropic phenothiazine drug levomepromazine (Nozinon) in man. Acta psychiat. scand., Suppl. 169, 366–81

    Article  Google Scholar 

  • Axelsson, R. (1977). On the serum concentrations and antipsychotic effects of thioridazine, thioridazine side-chain sulfoxide and thioridazine side-chain sulfone, in chronic psychotic patients. Curr. Ther. Res., 21, 587–605

    Google Scholar 

  • Axelsson, R. and Mårtensson, E. (1977). The concentration pattern of non-conjugated thioridazine metabolites in serum by thioridazine treatment and its relationship to physiological and clinical variables. Curr. Ther. Res., 21, 561–86

    CAS  Google Scholar 

  • Axelsson, R. and Mårtensson, E. (1980). Side effects of thioridazine: relationship to total and unbound serum concentrations of the drug and its main metabolites. In Phenothiazines and Structurally Related Drugs: Basic and Clinical Studies (ed. E. Usdin, H. Eckert and I. S. Forrest), Elsevier/North Holland, Amsterdam, pp. 295–8

    Google Scholar 

  • Belpaire, F. M., Vanderheeren, F. A. J. and Bogaert, M. G. (1975). Binding of thioridazine and some of its metabolites to human serum protein and human albumin. Arzneim-Forsch., 25, 1969–71

    CAS  Google Scholar 

  • Bickel, M. H. (1969). The pharmacology and biochemistry of N-oxides. Pharmac. Rev., 21, 325–55

    CAS  Google Scholar 

  • Bolt, A. G. and Forrest, I. S. (1967). 7-Hydroxychlorpromazine in normal and abnormal human chlorpromazine metabolism. Proc. West. Pharm. Soc., 10, 11–14

    CAS  Google Scholar 

  • Chan, T. L., Sakalis, G. and Gershon, S. (1974). Quantitation of chlorpromazine and its metabolites in human plasma and urine by direct spectrodensitrometry of thin-layer chromatograms. In Phenothiazines and Structurally Related Drugs (ed. I. S. Forrest, C. J. Carr and E. Usdin), Pergamon Press, New York, pp. 323–33

    Google Scholar 

  • Craig, J. C. and Gruenke, L. D. (1980). Simultaneous determination of chlorpromazine and its major metabolites in plasma and red blood cells by a GC/MS method: clinical implications. In Phenothiazines and Structurally Related Drugs: Basic and Clinical Studies (ed. E. Usdin, H. Eckert, and I. S. Forrest), Elsevier/North Holland, Amsterdam, pp. 129–33

    Google Scholar 

  • Creese, I. and Snyder, S. H. (1977). A simple and sensitive radioreceptor assay for antischizophrenic drugs in blood. Nature, Lond., 270, 180–2

    Article  CAS  Google Scholar 

  • Creese, I., Manian, A. A., Prosser, T. D. and Snyder, S. H. (1978). 3H-Haloperidol binding to dopamine receptors in the rat corpus striatum: influence of chlorpromazine metabolites and derivatives. Eur. J. Pharmac., 47, 291–6

    Article  CAS  Google Scholar 

  • Curry, S. H. and Marshall, J. H. L. (1968). Plasma levels of chlorpromazine and some of its relatively non-polar metabolites in psychiatric patients. Life Sci., 7, 9–17

    Article  PubMed  CAS  Google Scholar 

  • Curry, S. H., D’Mello, A. and Mould, G. P. (1971). Destruction of chlorpromazine during absorption in the rat in vivo and in vitro. Br. J. Pharmac., 42, 403–11

    Article  CAS  Google Scholar 

  • Dahl, S. G. (1976). Pharmacokinetics of methotrimeprazine after single and multiple doses. Clin. Pharmac. Ther., 19, 435–42

    CAS  Google Scholar 

  • Dahl, S. G. (1979). Monitoring of phenothiazine plasma levels in psychiatric patients. In Neuropsychopharmacology (ed. B. Saletu, P. Berner and L. Hollister), Pergamon Press, Oxford, pp. 567–75

    Google Scholar 

  • Dahl, S. G. and Garle, M. (1977). Identification of non-polar methotrimeprazine metabolites in plasma and urine by GLC-mass spectrometry. J. Pharm. Sci., 66, 190–3

    Article  PubMed  CAS  Google Scholar 

  • Dahl, S. G. and Jacobsen, S. (1976). GLC determination of methotrimeprazine and its sulfoxide in plasma. J. Pharm. Sci., 65, 1329–33

    Article  PubMed  CAS  Google Scholar 

  • Dahl, S. G. and Hall, H. (1981). Binding affinity of levomepromazine and two of its major metabolites to central dopamine and α-adrenergic receptors in the rat. Psychopharmacology, in press

    Google Scholar 

  • Dahl, S. G. and Strandjord, R. (1977). Pharmacokinetics of chlorpromazine after single and chronic dosage. Clin. Pharmac. Ther., 21, 437–48

    CAS  Google Scholar 

  • Dahl, S. G., Strandjord, R. and Sigfusson, S. (1977). Pharmacokinetics and relative bioavailability of levomepromazine after repeated administration of tablets and syrup. Eur. J. clin. Pharmac., 11, 305–10

    Article  CAS  Google Scholar 

  • Davidson, J. P., Terry, L. L. and Sjoerdsma, A. (1957). Action and metabolism of chlorpromazine sulfoxide in man. J. Pharmac. exp. Ther., 127, 8–12

    Google Scholar 

  • Fenner, H. (1974). EPR studies on the mechanism of biotransformation of tricyclic neuroleptics and antidepressants. In Phenothiazines and Structurally Related Drugs (ed. I. S. Forrest, C. J. Carr and E. Usdin), Raven Press, New York, pp. 5–13

    Google Scholar 

  • Fishman, V. and Goldenberg, H. (1965). Side-chain degradation and ring hydroxylation of phenothiazine tranquilizers. J. Pharmac. exp. Ther., 150, 122–8

    CAS  Google Scholar 

  • Forrest, I. S., Kanter, S. L., Sperco, J. E. and Wechsler, M. B. (1965). A comprehensive determination of thioridazine and its metabolites urine. Am. J. Psychiat., 121, 1049–53

    Article  PubMed  CAS  Google Scholar 

  • Forrest, I. S., Green, D. E., Serra, M. T. and Usdin, E. (1980). In vivo dechlorination of chlorpromazine. In Phenothiazines and Structurally Related Drugs: Basic and Clinical Studies (ed. E. Usdin, H. Eckert and I. S. Forrest), Elsevier/North Holland, Amsterdam, pp. 151–4

    Google Scholar 

  • Freedberg, K. A., Innis, R. B., Creese, I. and Snyder, S. (1979). Anti-schizophrenic drugs: differential plasma protein binding and therapeutic activity. Life Sci., 24, 2467–74

    Article  PubMed  CAS  Google Scholar 

  • Gibaldi, M. and Feldman, S. (1972). Route of administration and drug metabolism. Eur. J. Pharmac., 19, 323–9

    Article  CAS  Google Scholar 

  • Gruenke, L. and Craig, J. C. (1975). Identification of a metabolite of thioridazine and mesoridazine from human plasma. Res. Commun, chem. Path. Pharmac., 10, 221–5

    CAS  Google Scholar 

  • Gschwend, H. W. (1974). Chemical approaches to the development of neuroleptics. In Industrial Pharmacology (1), Neuroleptics (ed. S. Fielding and H. Lal), Futura Publishing Co., New York, pp. 1–51

    Google Scholar 

  • Hammar, C.-G., Holmstedt, B., Lindgren, J.-E. and Tham, R. (1969). The combination of gas-chromatography and mass spectrometry in the identification of drugs and metabolites. Adv. Pharmac. Chemother., 7, 53–89

    CAS  Google Scholar 

  • Hansen, L. B. and Larsen, N.-E. (1977). Plasma concentrations of perphenazine and its sulfoxide metabolite during continuous oral treatment. Psychopharmacology, 53, 127–30

    Article  PubMed  CAS  Google Scholar 

  • Hansen, L. B., Elley, J., Christensen, T. R., Larsen, N.-E., Naestoft, J. and Hvidberg, E. F. (1979). Plasma levels of perphenazine and its major metabolites during simultaneous treatment with anticholinergic drugs. Br. J. clin. Pharmac., 7, 75–80

    Article  CAS  Google Scholar 

  • Hotovy, R. and Kapff-Walter, J. (1960). Die pharmakologischen Eigenschaften des Perphenazinsulfoxyds. Arzneim.-Forsch., 10, 638–50

    CAS  Google Scholar 

  • Kaul, P. N., Conway, M. W., Ticker, M. K. and Clark, M. L. (1972). Chlorpromazine metabolism II: Determination of non-conjugated metabolites in blood of schizophrenic patients. J. Pharm. Sci., 61, 581–5

    Article  PubMed  CAS  Google Scholar 

  • Kleinman, J. E., Bigelow, L. B., Rogol, A., Weinberger, D. R., Nazrallah, H. A., Wyatt, R. J. and Gillin, J. C. (1980). A clinical trial of 7-hydroxychlorpromazine in chronic schizophrenia. In Phenothiazines and Structurally Related Drugs: Basic and Clinical Studies (ed. E. Usdin, H. Eckert and I. S. Forrest), Elsevier/North Holland, Amsterdam, pp. 275–8

    Google Scholar 

  • Krieglstein, J., Lier, F. and Michaelis, J. (1972). Albumin binding and hydrophobic character of promazine and chlorpromazine metabolites. Naunyn-Schmiedebergs Arch. Pharmac., 272, 121–30

    Article  CAS  Google Scholar 

  • Lader, M. (1976). Monitoring plasma concentrations of neuroleptics. Pharmako-psychiatrie, 9, 170–7

    Article  CAS  Google Scholar 

  • Lal, S. and Sourkes, T. L. (1972). Effect of various chlorpromazine metabolites on amphetamine-induced stereotyped behaviour in the rat. Eur. J. Pharmac., 17, 283–6

    Article  CAS  Google Scholar 

  • Mackay, A. V. P., Healey, A. F. and Baker, J. (1974). The relationship of plasma chlorpromazine to its 7-hydroxy and sulphoxide metabolites in a large population of chronic schizophrenics. Br. J. clin. Pharmac., 1, 425–430

    Article  CAS  Google Scholar 

  • Manian, A. A., Efron, E. D. and Goldberg, M. E. (1965). A comparative pharmacological survey of a series of monohydroxylated and methoxylated chlorpromazine derivatives. Life Sci., 4, 2425–38

    Article  PubMed  CAS  Google Scholar 

  • Mårtensson, E., Nyberg, G. and Axelsson, R. (1975). Quantitative determination of thioridazine and non-conjugated thioridazine metabolites in serum and urine of psychiatric patients. Curr. Ther. Res., 18, 687–700

    PubMed  Google Scholar 

  • Mårtensson, E., Nyberg, G. and Axelsson, R. (1980). Thioridazine and thioridazine metabolites in cerebrospinal fluid in psychiatric patients. In Phenothiazines and Structurally Related Drugs (ed. E. Usdin, H. Eckert and I. S. Forrest), Elsevier/North Holland, Amsterdam, pp. 173–6

    Google Scholar 

  • Meltzer, H. Y., Fang, V. S., Simonovich, M. and Paul, S. (1977). Effect of metabolites of chlorpromazine on plasma prolactin levels in male rats. Eur. J. Pharmac., 41, 431–6

    Article  CAS  Google Scholar 

  • Passwal, M., Dahl, S. G. and Refsum, H. (1976). Anticholinergic and cardiodepressive effects of levomepromazine and two of its metabolites on isolated rat atria. Eur. J. Pharmac., 40, 249–54

    Article  CAS  Google Scholar 

  • Perry, T. L., Culling, C. F. A., Berry, K. and Hansen, S. (1964). 7-Hydroxychlorpromazine: potential toxic drug metabolite in psychiatric patients Science, N.Y., 146, 81–3

    Article  CAS  Google Scholar 

  • Posner, H. S., Hearst, E., Taylor, W. L. and Cosmides, G. J. (1968). Model metabolites of chlorpromazine and promazine: relative activities in some pharmacological and behavioural tests. J. Pharmac. exp. Ther., 137, 84–90

    Google Scholar 

  • Rieger, H. and Krieglstein, J. (1974). Quantitative analysis of the EEG effects produced by imipramine, desipramine, promazine and monodesmethyl promazine in the isolated perfused rat brain. Psychopharmacologia, 30, 163–79

    Article  Google Scholar 

  • Roth, J. A., Whittemore, R. M., Shakarjian, M. P. and Eddy, B. J. (1979). Inhibition of human brain type A and B monoamine oxidase by chlorpromazine and metabolites. Commun. Psychopharmac., 3, 235–43

    CAS  Google Scholar 

  • Sakalis, G., Chan, T. L., Gershon, S. and Park, S. (1973). The possible role of metabolites in therapeutic response to chlorpromazine treatment. Psychopharmacologia, 32, 279–84

    Article  PubMed  CAS  Google Scholar 

  • Sakalis, G., Chan, T. L., Sathanantan, G., Schooler, N., Goldberg, S. and Gerson, S. (1977). Relationship among clinical response, extrapyramidal syndrome and plasma chlorpromazine and metabolite ratios. Commun. Psychopharmac, 1, 157–66

    CAS  Google Scholar 

  • Sakalis, G., Traficante, L. J. and Gardos, G. (1980). Treatment of drug-resistant schizophrenics with mesoridazine. In Phenothiazines and Structurally Related Drugs: Basic and Clinical Studies (ed. E. Usdin, H. Eckert and I. S. Forrest), Elsevier/North Holland, Amsterdam, pp. 207–14

    Google Scholar 

  • Sakurai, Y., Nakahara, T. and Takahasi, R. (1975). Prediction of response to chlorpromazine treatment in schizophrenics. Psychopharmacologia, 44, 195–203

    Article  PubMed  CAS  Google Scholar 

  • Schooler, N. R., Sakalis, G., Chan, T. L., Gershon, S., Goldberg, S. C. and Collins, P. (1976). Chlorpromazine metabolism and clinical response in acute schizophrenia: a preliminary report. In Pharmacokinetics of Psychoactive Drugs (ed. S. A. Gottschalk and S. Merlis), Spectrum Publishing, New York, pp. 199–219

    Google Scholar 

  • Tune, L. E., Creese, I., Depaulo, J. R., Scavney, P. R., Coyle, J. T. and Snyder, S. H. (1980). Clinical state and serum neuroleptic levels measured by radioreceptor assay in schizophrenia. Am. J. Psychiat., 137, 187–90

    Article  PubMed  CAS  Google Scholar 

  • Turano, P., March, J. E., Turner, W. J. and Merlis, S. (1972). Qualitative and quantitative report on chlorpromazine and metabolites in plasma, erythrocytes and erythrocyte washings from chronically medicated schizophrenic patients. J. Med., 3, 190–220

    Google Scholar 

  • Usdin, E. (1971). The assay of chlorpromazine and its metabolites in blood, urine and other tissues. CRC crit. Rev. clin. Lab. Sci., 2, 347–91

    Article  PubMed  CAS  Google Scholar 

  • Usdin, E. (1978). Metabolic pathways of antipsychotic drugs. In Psychopharmacology: A Generation of Progress (ed. M. A. Lipton, A. Dimascio and K. F. Killam) Raven Press, New York, pp. 895–903

    Google Scholar 

  • Wiles, K. H., Kolakowska, T., McNeilly, A. S., Mandelbronte, B. M. and Gelder, M. G. (1976). Clinical significance of plasma chlorpromazine levels. I. Plasma levels of the drug, some of its metabolites and prolactin during acute treatment. Psychol. Med., 6, 407–15

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1981 The contributors

About this chapter

Cite this chapter

Dahl, S.G. (1981). Active metabolites of phenothiazine drugs. In: Usdin, E., Dahl, S.G., Gram, L.F., Lingjærde, O. (eds) Clinical Pharmacology in Psychiatry. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-05929-4_10

Download citation

Publish with us

Policies and ethics