Skip to main content

Summary

After a general discussion about the importance of tool wear sensing in the automation of manufacturing processes, requirements for industrial utilization of sensors are described.

Based upon a critical assesment of the state of the art, a new optical sensor is escribed in its working principle. Constraint control of a prefixed VB value and real intermittent measurement of VB value are possible in a simple way. Results obtained in experimental tests carried out measuring several worn carbide inserts are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. GIUSTI, F. SCALARI, F. BINI (1974) Die Adaptive Steuerung von Werkzeugmaschi nen,Werkstatt and Betrieb 107, 10.

    Google Scholar 

  2. F. GIUSTI, M. SANTOCHI, F. SCALARI, G. TANTUSSI (1977) In process measurement of tool flank wear, 2nd World Fair for Technology Exchange Chicago.

    Google Scholar 

  3. G.F. MICHELETTI, W. KOENIG, H.R. VICTOR (1976) In process tool wear sensors for cutting operations, CIRP Annals 25/2.

    Google Scholar 

  4. A.A. ZAKARIA, Y.I. ELGOMAYLL (1974) Tool condition monitoring for adaptive control, Paper SME MR74–143.

    Google Scholar 

  5. G. SPUR, F. LEONARDS, Sensoren zur Erfassung von Prozesskenngrossen bei der Drehbearbeitung, CIRP Annals 24/1.

    Google Scholar 

  6. A. DE FILIPPI, R. IPPOLITO (1969) Adaptive control in turning: cutting force and tool wear relationship for P10, P20, P30 carbides, Annals of CIRP.

    Google Scholar 

  7. A. DE FILIPPI, R. IPPOLITO (1972) Analysis of the correlation among: cutting force variation (vs time); chip formation parameters, Annals of CIRP.

    Google Scholar 

  8. G.F. MICHELETTI, R. IPPOLITO (1973) Experimental analysis of the correlation between cutting force variation with time, 14 Int. MTDR Conf. Manchester.

    Google Scholar 

  9. W. KONIG, K. LANGHAMMER, H.U. SCHEMMEL (1972), Correlation between resultant cutting force component and tool wear, CIRP Annals 21/1.

    Google Scholar 

  10. A.K. RAKHIT, T.S. SANKAR, M. OSMAN (1975), On the relationship between the random metal cutting forces and the surfa ce formation in finish turning, SME Tech. Paper MSR75–01.

    Google Scholar 

  11. K. TARAMAN, R. SWUANDO, W. YAMAUCHI (1974), Relationship between tool forces and flank wear, SME Tech. Paper MR74,704.

    Google Scholar 

  12. E.J. WELLER, H.M. SCHRIER,B. WELCHBRODP (1969) What sound can be expected from a worn tool, ASME Trans. 91/3.

    Google Scholar 

  13. M.C. SHAW, F.R. SHANGHANI (1962) On the origin of cutting vibrations, CIRP Annals.

    Google Scholar 

  14. O. BIORKE (1966), An analysis of the cutting process dynamics with reference to errors in cutting force measurements, CIRP Annals.

    Google Scholar 

  15. P. MARTIN, B. MUTELS, J.P. DRAPIER (1974), Influence of lathe tool wear on the vibrations sustained in cutting, 15th MTDR Conference.

    Google Scholar 

  16. M. WECK, E. VERHAAG, M. GATHER (1975), Adaptive control for face milling operations with strategies for avoiding chatter-vibrations and for automatic cut distributions, CIRP Annals 24/1.

    Google Scholar 

  17. D. SPURGEON, R. SLATER (1974), In process indication of surface roughness using a fibre optics trasducer, 15th MTDR Conference.

    Google Scholar 

  18. H. MURRAY (1973) Exploratory investi gation of laser methods for grinding research, CIRP Annals 22/1.

    Google Scholar 

  19. W. HANSEL (1975), Messverfahren zur prozessbegleitenden Oberflachen-erfassung, Industrie Anzeiger 95,37•

    Google Scholar 

  20. A. NOVAK (1972), Development of method for AC machine tools. Workpiece dimensions and vibrations, Int. Rep., Royal Institute of Technology, Stockolm.

    Google Scholar 

  21. H. TAKEYAMA, Y. DOI, T. MITSUOKA, H. SEKIGUCHI (1968), Sensors of tool life for optimisation of machining, Journal of Mech. Lab. of Japan 14/2.

    Google Scholar 

  22. G. SPUR, F. LEONARDS (1973), Kontinuierlich arbeitende Verschleissensoren fur ACO-Systeme bei der Drehbearbeitung, ZWF 68, 10.

    Google Scholar 

  23. K. ESSEL, W. HANSEL (1975) Development of sensors for process control systems in the field of production engineering, PDV Report KFK-PDV, 41.

    Google Scholar 

  24. N.F. SHILLMAN (1971), The on-line control of cutting conditions using direct feed back, 12th Int. MTDR Conference.

    Google Scholar 

  25. V. SOLAJA, D. VUKELJA (1973), Identification of tool wear rate by temperature variation of a carbide tip, CIRP Annals 22/1.

    Google Scholar 

  26. Y.M. SOLOMENTSEV (1974), Using adapti ve control of tool wear to optimize machi ning processes, Machines and tooling, 8.

    Google Scholar 

  27. G. BOOTHROYD, J.M. EAGLE, A.CHISHOLM (1967), Effect of flank wear on the tempe rature generated during metal cutting, 8th MTDR Conference.

    Google Scholar 

  28. D.R. OLBERTS (1959), A study of the effect of tool flank wear on tool-chip interface temperature, ASME Trans.

    Google Scholar 

  29. A. GERVE (1972), Die Wichtigsten Verschleissmethoden der Isotopentechnik, Kerntechnik, 14/5.

    Google Scholar 

  30. N.H. COOK, K. SUBRAMANIAN, S. BASILE (1975), Microisotope tool wear sensing method, MIT Report.

    Google Scholar 

  31. A.J. WILKINSON (1971), Constriction-Resistance concept applied to wear measu rement of metal cutting tools, Proc. IEE 118/2.

    Google Scholar 

  32. E. SAKAI, N. YODA, K. OGURA (1974), Research on tool wear sensing, JSME 740–15

    Google Scholar 

  33. K. UEHARA (1973) New attempts for short time tool-life testing, CIRP Annals 22/1.

    Google Scholar 

  34. E.H. FROST-SMITH (1970), Optimization of the machining process and overall system concepts, MTIRA Conf. on A.C. of machine tools.

    Google Scholar 

  35. K. YAMAZAKI, A. YAMADA, S. SAWAI, H. TAKEYAMA (1974), A study on adaptive control in AC milling machine, CIRP Annals 23/1.

    Google Scholar 

  36. K. ESSEL, F. OTTO, W. KIRCHNER (1974), Sensor zum Erfassen des Freiflachenverschleises an Drehwerkzeugen, VDI-Z 116/17.

    Google Scholar 

  37. H. TAKEYAMA (1968), Study on optimiza tion of machine tool, Trans. of the Japan Soc. of Mech. Eng. 34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1980 The Department of Mechanical Engineering, University of Birmingham

About this chapter

Cite this chapter

Giusti, F., Santochi, M. (1980). Development of a Fibre Optic Sensor for in Process Measurement of Tool Flank Wear. In: Tobias, S.A. (eds) Proceedings of the Twentieth International Machine Tool Design and Research Conference. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-05172-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-05172-4_41

  • Publisher Name: Palgrave Macmillan, London

  • Print ISBN: 978-1-349-05174-8

  • Online ISBN: 978-1-349-05172-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics