Skip to main content
  • 132 Accesses

Abstract

The application of Griffith’s theory to explain failure in hardened cement paste is discussed in Chapter 4. Failure due to external loading is brought about by the spontaneous growth of the critical crack when the strain energy release rate equals the maximum rate of energy requirement. At this point the rate of energy release is known as the ‘critical strain energy release rate’, G c , and is, apparently, a characteristic property of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kaplan, M. F., ‘Crack’ Propagation and the Fracture of Concrete’, Proc. Am. Concr. Inst., 58, No. 5, 591–610 (1961).

    Google Scholar 

  2. Glucklich, J., ‘Fracture of Plain Concrete’, Am. Soc. Civ. Engrs. J. Engng. Mech. Div., 89 (EM6), 127–138 (1963).

    Google Scholar 

  3. Kaplan, M. F., ‘The Application of Fracture Mechanics to Concrete’, Proc. Conf. Structure of Concrete and Its Behaviour Under Load, London 1965, 169–175, Cement Concrete Association, London (1968).

    Google Scholar 

  4. Hsu, T. T. C., Slate, F. O., Sturman, G. M., and Winter, G., ‘Microcracking of Plain Concrete and the Shape of the Stress-Strain Curve’, Proc. Am. Concr. Inst., 60, No. 2, 209–224 (1963).

    Google Scholar 

  5. Bache, H. H. and Nepper-Christensen, P., ‘Observation on Strength and Fracture in Lightweight and Ordinary Concrete’, Proc. Conf. Structure of Concrete and Its Behaviour Under Load, London 1965, 93–108, Cement and Concrete Association, London (1968).

    Google Scholar 

  6. Alexander, K. M., Wardlaw, J., and Gilbert, D. J., ‘Aggregate-Cement Bond, Cement Paste Strength and the Strength of Concrete’, Proc. Conf. Structure of Concrete and Its Behaviour Under Load, London 1965, 59–92, Cement and Concrete Association, London (1968).

    Google Scholar 

  7. Hsu, T. T. C. and Slate, F. O., ‘Tensile Bond Strength Between Aggregate and Cement Paste or Mortar’, Proc. Am. Concr. Inst., 60, No. 4, 465–486 (1963).

    Google Scholar 

  8. Neville, A. M., Properties of Concrete, Pitman, London, 251 (1973).

    Google Scholar 

  9. Jones, R. and Kaplan, M. F., ‘The Effect of Coarse Aggregate on the Mode of Failure of Concrete in Compression and Flexure’, Mag. Concr. Res., 9, No. 26, 89–94 (1957).

    Article  Google Scholar 

  10. Kaplan, M. F., ‘Flexural and Compressive Strength of Concrete as Affected by the Properties of the Coarse Aggregate’, Proc. Am. Concr. Inst., 55, No. 11, 1193–1208 (1959).

    Google Scholar 

  11. Lyubimova, T. Yu. and Pinus, E. R., ‘Crystallization Structure in the Contact Zone Between Aggregate and Cement in Concrete’, Kolloidnyi Zhurnal, 24, No. 5, 578–587 (1962) (Russian).

    Google Scholar 

  12. Farran, J., ‘Mineralogical Contributions to the Study of Adhesion Between the Hydrated Constituents of Cement and Embedded Materials’, Rev. Mater. Constr. Tray. pubL, No. 430/1, 155–172 and No. 492, 191–209 (1956) (French).

    Google Scholar 

  13. Buck, A. L. and Dolch, W. L., ‘Investigation of a Reaction Involving Non-dolomitic Limestone Aggregate in Concrete’, Proc. Am. Concr. Inst., 63, No. 7, 755–765 (1966).

    Google Scholar 

  14. Hadley, D. W., ‘The Nature of the Paste-Aggregate Interface’, Interim Report No. 40, Purdue University, Indiana, USA (1972).

    Google Scholar 

  15. Alexander, K. M. and Taplin, J. H., ‘Concrete Strength, Paste Strength, Cement Hydration, and the Maturity Rule’, Aust. J. Appl. Sci., 13, No. 4, 277–284 (1962).

    Google Scholar 

  16. Alexander, K. M. and Taplin, J. H., ‘Analysis of the Strength and Fracture of Concrete Based on Unusual Insensitivity of Cement-Aggregate Bond to Curing Temperature’, Aust. J. Appl. Sci., 15, No. 3, 160–170 (1964).

    Google Scholar 

  17. Bennett, E. W. and Khilji, Z. M., ‘The Effect of Some Properties of the Coarse Aggregate in Hardened Concrete’, 17–28 (Autumn 1963), and 17–24 (Spring 1964 ).

    Google Scholar 

  18. Mayer, F. M., ‘The Effect of Different Aggregates on the Compressive Strength and Modulus of Elasticity of Normal Concrete’, Beton 22, No. 2, 61–62 (1972) (German).

    Google Scholar 

  19. Singh, B. G., ‘Specific Surface of Aggregates Related to Compressive and Flexural Strength of Concrete’, Proc. Am. Concr. Inst., 54, No. 10, 897–907 (1958).

    Google Scholar 

  20. Walker, S. and Bloem, L., ‘Effects of Aggregate Size on Concrete Properties’, Proc. Am. Concr. Inst., 57, No. 3, 283–298 (1960).

    Google Scholar 

  21. Cordon, W. A. and Gillespie, H. A., ‘Variables in Concrete Aggregates and Portland Cement Paste Which Influence the Strength of Concrete’, Proc. Am. Concr. Inst., 60, No. 8, 1029–1052 (1963).

    Google Scholar 

  22. Hobbs, D. W., ‘The Compressive Strength of Concrete: A Statistical Approach to Failure’, Mag. Concr. Res., 24, No. 80, 127–138 (1972).

    Article  Google Scholar 

  23. Hobbs, D. W., The Strength and Deformation of Concrete Under Short-term Loading: A Review, Cement and Concrete Association Technical Report, No. 42–484, London (1973).

    Google Scholar 

  24. Gilkey, H. J., ‘Water Cement Ratio Versus Strength—Another Look’, Proc. Am. Concr. Inst., 57, No. 10, 1287–1312 (1961).

    MathSciNet  Google Scholar 

  25. Erntroy, H. C. and Shacklock, B. W., ‘Design of High-Strength Concrete Mixes’, Proc. Symp. Mix Design and Quality Control of Concrete, London, 55–73 (1954).

    Google Scholar 

  26. McIntosh, J. D., ‘Basic Principles of Concrete Mix Design’, Proc. Symp. Mix Design and Quality Control of Concrete, London, 3–18 (1954).

    Google Scholar 

  27. Wright, P. J. F. and McCublin, A. D., The Effect of Aggregate Type and Aggregate/Cement Ratio on Compressive Strength of Concrete, Road Research Note RN/1819, Road Research Laboratories (1952).

    Google Scholar 

  28. Abrams, D. A., Design of Concrete Mixtures, Bulletin No. 1, Structure of Materials Research Laboratories, Lewis Institute, Chicago (1918). Reprinted in Publication SP-52, A Selection of Historic American Papers on Concrete, 1876–1926, Ed. H. Newlon Jr., American Concrete Institute, Detroit, 309–330 (1976).

    Google Scholar 

  29. Road Research Laboratory, Design of Concrete Mixes, Road Note No. 4, HSMO, London (1950).

    Google Scholar 

  30. Teychenné, D. C., Franklin, R. E., and Erntroy, H. C., Design of Normal Concrete Mixes, Department of the Environment, HSMO, London (1975).

    Google Scholar 

  31. Price, W. H., ‘Factors Influencing Concrete Strength’, Proc. Am. Concr. Inst., 47, No. 8, 417–432 (1951).

    Google Scholar 

  32. Klieger, P., ‘Effect of Mixing and Curing Temperature on Concrete Strength’, Proc. Am. Concr. Inst., 54, No. 12, 1063–1081 (1958).

    Google Scholar 

  33. Bureau of Reclamation, Effect of Initial Curing Temperature on the Compressive Strength and Durability of Concrete’, Concrete Laboratories Report No. C-625, US Department of Commerce, Denver, Colorado (1952).

    Google Scholar 

  34. Jaegermann, C. H., Effect of Exposure to High Evaporation and Elevated Temperatures of Fresh Concrete on the Shrinkage and Creep Characteristics of Hardened Concrete, DSc Thesis, Faculty of Civil Engineering, TechnionIsrael Institute of Technology, Haifa, 1967 ( Hebrew with English synopsis).

    Google Scholar 

  35. Soroka, I. and Peer, E., ‘Influence of Cement Composition on Compressive Strength of Concrete Cast and Initially Cured at High Temperatures’, Proc. Intern. RILEM Symp. Concrete and Reinforced Concrete in Hot Countries, Haifa, I, 241–258 (1971).

    Google Scholar 

  36. Shalon, R. and Ravina, D., ‘Studies in Concreting in Hot Countries’, Proc. Intern. RILEM Symp. Concrete and Reinforced Concrete in Hot Countries, Haifa, I, 46 (1960).

    Google Scholar 

  37. Ravina, D. and Shalon, R., ‘The Effect of Elevated Temperatures on Strength of Portland Cement’, in Temperature and Concrete, ACI Spec. Publ., No. 25 American Concrete Institute, Detroit, 275–289 (1970).

    Google Scholar 

  38. Butt, Y. M., Kolbasov, V. M., and Timashev, V. V., ‘High Temperature Curing of Concrete Under Atmospheric Pressure’, Proc. Symp. Chem. Cement Tokyo, 3, 437–471 (1968).

    Google Scholar 

  39. Gonnerman, H. F., ‘Effect of End Condition of Cylinder on Compressive Strength of Concrete’, Proc. Am. Soc. Test. Mater., 24 (II), 1036–1063 (1924).

    Google Scholar 

  40. Werner, G., ‘The Effect of Type of Capping Material on the Compressive Strength of Concrete Cylinders’, Proc. Am. Soc. Test. Mater., 58, 1166–1181 (1958).

    Google Scholar 

  41. Blanks, R. F. and McNamara, C. C., ‘Mass Concrete Tests in Large Cylinders’, Proc. Am. Concr. Inst., 31, 280–303 (1935).

    Google Scholar 

  42. US Bureau of Reclamation, Effect of Maximum Size of Aggregate on Compressive Strength of Concrete, Laboratory Report No. C-1052, Denver, Colorado (1963).

    Google Scholar 

  43. Murdock, J. W. and Kesler, C. E., ‘Effect of Length to Diameter Ratio of Specimen on the Apparent Compressive Strength of Concrete’, Bull. Am. Soc. Test. Mater., No. 221, 68–73 (1957).

    Google Scholar 

  44. Gonnerman, H. F., ‘Effect of Size and Shape of Test Specimen on Compressive Strength of Concrete’, Proc. Am. Soc. Test. Mater., 25 (II), 237–250 (1925).

    Google Scholar 

  45. Hansen, H., Kielland, A., Nielsen, K. E. C., and Thaulow, S., ‘Compressive Strength of Concrete—Cube or Cylinder?’ RILEM Bull., No. 17, 23–30 (1962).

    Google Scholar 

  46. Evans, R. H., ‘The Plastic Theories for the Ultimate Strength of Reinforced Concrete Beams’,.I. Inst. Civ. Engr. 21, 98–121 (1943/4).

    Article  Google Scholar 

  47. Neville, A. M., Properties of Concrete, 2nd edn., Pitman, London, 434 (1973).

    Google Scholar 

  48. McHenry, D. and Shideler, J. J., ‘Review of Data on Effect of Speed in Mechanical Testing of Concrete’, Symp. on Speed of Testing of Non-Metalic Materials, American Society for Testing Materials, Special Technical Publication No. 185, Philadelphia, 72–82 (1956).

    Google Scholar 

  49. McNeely, D. J. and Lash, S. D., ‘Tensile Strength of Concrete’, Proc. Am. Concr. Inst., 60, No. 6, 751–761 (1963).

    Google Scholar 

  50. Wright, P. J. F., ‘The Effect of Method of Test on the Flexural Strength of Concrete’, Mag. Concr. Res., 4, No. 11, 67–76 (1952).

    Article  Google Scholar 

  51. Nepper-Christensen, P. and Nielsen, T. P. H., ‘Modal Determination of the Effect of Bond Between Coarse Aggregate and Mortar on the Compressive Strength of Concrete’, Proc. Am. Concr. Inst., 66, No. 1, 69–72 (1969).

    Google Scholar 

  52. Lezy, R. and Paillere, A. M., ‘The Improvement of Concretes, Mortars and Grouts by the Addition of Resin’, RILEM Symp. Synthetic Resins in Bldg. Const., Paris (1967) ( French).

    Google Scholar 

  53. Glucklich, J., ‘The Strength of Concrete as a Composite Material’, Proc. 1971 Intern. Conf Mechanical Behaviour of Materials, 4, 104–112, Society of Materials Science, Japan (1972).

    Google Scholar 

  54. Ishai, O., ‘On the Dual Type Fracture in Hardened Cement Mortars’, Bull. Res. Council Israel, 7C, No. 3, 147–154 (1959).

    Google Scholar 

  55. Ishai, O., ‘Influence of Sand Concentration on Deformation of Mortars Beams Stressed Under Low Stresses’, Proc. Am. Concr. Inst., 58, No. 5, 611–623 (1961).

    Google Scholar 

  56. CEB, International Recommendation for Design and Construction of Concrete Structures Cement and Concrete Association, London, 25–26 (1970).

    Google Scholar 

  57. Glucklich, J., ‘On Compression Failure of Plain Concrete’, T. and A.M. Report, No. 215, University of Illinois (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 1979 I. Soroka

About this chapter

Cite this chapter

Soroka, I. (1979). Strength of concrete. In: Portland Cement Paste and Concrete. Palgrave, London. https://doi.org/10.1007/978-1-349-03994-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-03994-4_8

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-03996-8

  • Online ISBN: 978-1-349-03994-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics