Skip to main content

Volume Changes in the Hardened Paste

  • Chapter
  • 135 Accesses

Abstract

It was stated earlier that the volume of the hydration products is smaller than the combined volumes of the reacting cement and water by approximately 25% of the water volume. Under normal conditions this reduction in the volume of the cement-water system increases the porosity of the paste and is not reflected in the bulk dimensions. A change in bulk dimensions may be caused by the presence of excessive free lime or magnesia in the cement or, as will be seen later (Chapter 6), due to chemical attack of aggressive solutions, etc. These types of volume change take place only under special conditions and involve chemical changes in the cement paste. The following discussion, however, is limited mostly to volume changes caused by physical factors such as external loading and changes in moisture content and temperature, and involve no chemical changes. An exception is carbonation shrinkage which is included in this discussion.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Feldman, R. F. and Beaudoin, J. J., ‘Microstructure and Strength of Hydrated Cement’, Symp. Chem. Cement Moscow (1974).

    Google Scholar 

  2. Spriggs, R. M., ‘Expressions for Effect of Porosity on Elastic Modulus of Polycrystalline Refractory Materials, Particularly Aluminium Oxide’, J. Am. Ceram. Soc., 44, No. 12, 628–629 (1961).

    Article  Google Scholar 

  3. Knudsen, F. P., ‘Effect of Porosity on Young’s Modulus of Alumina’, J. Am. Ceram. Soc., 45, No. 2, 94–95 (1962).

    Article  MathSciNet  Google Scholar 

  4. Spriggs, R. M. and Brissette, L. A., ‘Expressions for Shear Modulus and Poisson’s Ratio of Porous Refractory Oxides’, J. Am. Ceram. Soc., 45, No. 4, 188–189 (1962).

    Article  Google Scholar 

  5. Mackenzie, J. K., ‘Elastic Constants of Solids Containing Spherical Holes’, Proc. Phys. Soc. (London), 63B, No. 1, 2–11 (1950).

    Article  MATH  Google Scholar 

  6. Hashin, Z., ‘Elastic Moduli of Heterogenous Materials’, J. Appl. Mech., 29, No. 1, 143–50 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  7. Powers, T. C., ‘Fundamental Aspects of Shrinkage of Concrete’, Revue Mater. Constr. No. 544, 79–85 (1961) (French).

    Google Scholar 

  8. Helmuth, R. A. and Turk, D. H., ‘Elastic Moduli of Hardened Portland Cement and Tricalcium Silicate Pastes: Effect of Porosity’, Highw. Res. Bd. Spec. Rep., No. 90, 135–144 (1966).

    Google Scholar 

  9. Verbeck, G. J. and Helmuth, R. A., ‘Structure and Physical Properties of Cernent Paste’, Proc. Symp. Chem. Cement Tokyo, 3, 1–37 (1968).

    Google Scholar 

  10. Sereda, P. J., Feldman, R. F., and Swenson, E. G., ‘Effect of Sorbed Water on Some Mechanical Properties of Hydrated Cement Pastes and Compacts’, Highw. Res. Bd. Spec. Rep., No. 90, 58–73 (1966).

    Google Scholar 

  11. Feldman, R. F. and Sereda, P. J., ‘A New Model for Hydrated Cement and Its Practical Implications’, Engng. J., 53, 53–59 (1970).

    Google Scholar 

  12. Wittmann, F. H., ‘Interaction of Hardened Cement Paste and Water’, J. Am. Ceram. Soc., 56, No. 8, 409–415 (1973).

    Article  Google Scholar 

  13. Anson, M., ‘An Investigation Into a Hypothetical Deformation and Failure Mechanism for Concrete’, Mag. Concr. Res., 47, No. 16, 73–82 (1964).

    Article  Google Scholar 

  14. Soroka, I. and Sereda, P. J., unpublished data (1966).

    Google Scholar 

  15. Feldman, R. F., ‘Sorption and Length-Change Scanning Isotherms of Methanol and Water on Hydrated Portland Cement’, Proc. Symp. Chem. Cement Tokyo, 3, 53–66 (1968).

    Google Scholar 

  16. Roper, H., ‘Dimensional Change and Water Sorption Studies of Cement Paste’, Highw. Res. Bd. Spec. Rep., No. 90, 74–83 (1966).

    Google Scholar 

  17. Haller, P., ‘Shrinkage and Creep of Mortar and Concrete’, Diskussionbericht, No. 124, EMPA, Zurich (1940) ( German).

    Google Scholar 

  18. : Roper, H., ‘Cement Paste Shrinkage—Relationships to Hydration, Young’s Modulus and Concrete Shrinkage’, Proc. Symp. Chem. Cement Tokyo, 3, 92–99 (1968).

    Google Scholar 

  19. Helmuth, R. A. and Turk, D. H., ‘The Reversible and Irreversible Drying Shrinkage of Hardened Portland Cement and Tricalcium Silicate Pastes’, J. Res. Dev. Labs. Portland Cement Ass., 9, No. 2, 8–21 (1967).

    Google Scholar 

  20. ACI Committee 516, ‘High Pressure Steam Curing: Modern Practice and Properties of Autoclaved Products’, Proc. Am. Concr. Inst., 62, No. 8, 869–908 (1965).

    Google Scholar 

  21. Menzel, C. A., ‘Strength and Volume Change of Steam-Cured Portland Cement Mortar and Concrete’, Proc. Am. Concr. Inst., 31, No. 2, 125–148 (1934).

    MathSciNet  Google Scholar 

  22. Hope, B. B., Neville, A. M., and Guruswami, A., ‘Influence of Admixtures on Creep of Concrete Containing Normal-Weight Aggregate’, Proc. RILEM-ABEM Symp. Effect of Admixtures on Properties of Hardened Mortar and Concrete Brussels, 4, 19–32 (1967).

    Google Scholar 

  23. Jessop, E. L., Ward, M. A., and Neville, A. M., ‘Influence of Water-Reducing and Set-Retarding Admixtures on Creep of Lightweight Aggregate Concrete’, in reference 22, p. 33.

    Google Scholar 

  24. Prior, M. E. and Adams, A. B., ‘Introduction to Producers’ Papers on Water Reducing Admixtures and Set Retarding Admixtures for Concrete’, Symp. on ‘Effect of Water Reducing Admixtures and Set Retarding Admixtures on Properties of Concrete’, American Society for Testing Materials Special Technical Publication No. 266, Philadelphia, 170–179 (1960).

    Google Scholar 

  25. Morgan, D. R., ‘Possible Mechanism of Influence of Admixtures on Drying Shrinkage and Creep in Cement Paste and Concrete’, Mater. Struct., 7, No. 40, 283–289 (1974).

    Google Scholar 

  26. Ishai, O., ‘The Time-Dependent Deformational Behaviour of Cement Paste, Mortar and Concrete’, Proc Conf. Structure of Concrete and Its Behaviour Under Load, London 1965, 345–364, Cement and Concrete Association, London (1968).

    Google Scholar 

  27. Powers, T. C., ‘Mechanism of Shrinkage and Reversible Creep of Hardened Cement Paste’, Proc. Conf. Structure of Concrete and Its Behaviour Under Load, London 1965, 319–344, Cement and Concrete Association, London (1968).

    Google Scholar 

  28. Wittmann, F. H., ‘Surface Tension, Shrinkage and Strength of Hardened Cement Paste’, Mater. Struct., 1, No. 6, 547–552 (1968).

    Google Scholar 

  29. Wittmann, F. H., ‘Discussion of Some Factors Influencing Creep of Concrete’, Res. Ser. III-Building, No. 167, The State Institute for Technical Research, Finland (1971).

    Google Scholar 

  30. Ruetz, W., ‘A Hypothesis for the Creep of Hardened Cement Paste and the Influence of Simultaneous Shrinkage’, Proc. Conf. Structure of Concrete and Its Behaviour Under Load, London 1965, 365–403 Cement and Concrete Association, London (1968).

    Google Scholar 

  31. Troxell, G. E., Raphael, J. M., and Davis, R. E., ‘Long-Time Creep and Shrinkage Tests of Plain and Reinforced Concrete’, Proc. Am. Soc. Test. Mater., 58, 1101–1120 (1958).

    Google Scholar 

  32. Nasser, K. W. and Neville, A. M., ‘Creep of Concrete at Elevated Temperatures’, J. Am. Concr. Inst., 62, No. 12, 1567–74 (1965).

    Google Scholar 

  33. Hannant, D. J., ‘Strain Behaviour of Concrete up to 95°C Under Compressive Stresses’, Proc. Conf. Prestressed Concrete Pressure Vessels, London 1967, The Institution of Civil Engineers, London (1968).

    Google Scholar 

  34. Roll, F., ‘The Relation Between Time-Dependent and Residual Deformation of Unsealed Concrete, Mortar and Paste Under Uniformally Distributed Stress’, Proc. Conf. Structure of Concrete and Its Behaviour Under Load, London 1965, 434–447, Cement and Concrete Association, London (1968).

    Google Scholar 

  35. Neville, A. M., ‘Tests on the Influence of the Properties of Cement on the Creep of Mortar’, RILEM Bull., No. 4, 5–17 (1959).

    Google Scholar 

  36. Neville, A. M., Properties of Concrete, Pittman, London, 348 (1972).

    Google Scholar 

  37. Wittmann, F. H., ‘The Effect of Moisture Content on Creep of Hardened Cement Pastes’, Rheol. Acta 9, No. 2,282–287 (1970) (German).

    Google Scholar 

  38. Ali, I. and Kesler, C. E., ‘Creep in Concrete With and Without Exchange of Moisture with the Environment’, T. and A.M. Rep., No. 641, Urbana University, Illinois (1963).

    Google Scholar 

  39. Neville, A. M., Creep of Concrete: Plain, Reinforced and Prestressed, North-Holland, Amsterdam (1970).

    Google Scholar 

  40. Glucklich, J. and Ishai, O., ‘Creep Mechanism in Cement Mortar’, Proc. Am. Concr. Inst., 59, No. 7, 923–948 (1962).

    Google Scholar 

  41. Feldman, R. F., ‘Mechanism of Creep of Hydrated Portland Cement’, Cement Concr. Res., 2, No. 5, 521–540 (1972).

    Article  Google Scholar 

  42. Lea, F. M., The Chemistry of Cement and Concrete, 2nd edn., Edward Arnold, London, 546 (1970).

    Google Scholar 

  43. Kamimura, K., Sereda, P. J., and Swenson, E. G., ‘Changes in Weight and Dimensions in the Drying and Carbonation of Portland Cement Mortars’, Mag. Concr. Res., 17, No. 50, 5–14 (1965).

    Article  Google Scholar 

  44. Verbeck, G. J., ‘Carbonation of Hydrated Portland Cement’, Am. Soc. Test. Mater. Spec. tech. Publ., No. 205, 17–36 (1958).

    Google Scholar 

  45. Alexander, K. M. and Wardlaw, J., ‘A Possible Mechanism for Carbonation Shrinkage and Crazing Based on Studies of Thin Layers of Hydrated Cement’, Aust. J. Appl. Sci., 10, No. 4, 470–483 (1959).

    Google Scholar 

  46. Powers, T. C., ‘A Hypothesis on Carbonation Shrinkage’, J. Res. Dey. Labs. Portland Cement Ass., 4, No. 2, 40–45 (1962).

    Google Scholar 

  47. Hunt, C. M. and Tomes, L. A., ‘Reaction of Hardened Portland Cement Paste with Carbon Dioxide’, J. Res. Nat. Bur. Stand., 66A, No. 6, 473–480 (1962).

    Article  Google Scholar 

  48. Swenson, E. G. and Sereda, P. J., ‘Mechanism of the Carbonation Shrinkage of Lime and Hydrated Cement’, J. AppL Chem., 18, No. 4, 111–117 (1968).

    Article  Google Scholar 

  49. Kondo, R., Diamon, M., and Akiba, T., ‘Mechanisms and Kinetics of Carbonation of Hardened Cement’, Proc. Symp. Chem. Cement Tokyo, 3, 402–409 (1968).

    Google Scholar 

  50. Meyers, S. L., ‘Thermal Expansion Characteristics of Hardened Cement Paste and of Concrete’, Proc. Highw. Res. Bd., 30, 193–203 (1950).

    Google Scholar 

  51. Mitchell, L. J., ‘Thermal Expansion Tests on Aggregates, Neat Cements and Concretes’, Proc. Am. Soc. Test. Mater., 53, 963–977 (1953).

    Google Scholar 

  52. Helmuth, A., ‘Dimensional Changes of Hardened Cement Pastes Caused by Temperature Changes’, Proc. Highw. Res. Bd., 40, 315–335 (1961).

    Google Scholar 

  53. Wittmann, F. H. and Lukas, J., ‘Experimental Study of Thermal Expansion of Hardened Cement Paste’, Mater. Struct., 7, No. 4, 247–252 (1974).

    Google Scholar 

  54. Bazant, Z. P., ‘Delayed Thermal Dilatation of Cement Paste Due to Mass Transport’, NucL Eng. Design, 14, 308–318 (1976).

    Article  Google Scholar 

  55. Wittmann, F. H., ‘Principles of a Model Describing the Characteristic Properties of Concrete’, Deutcher Ausschuss für Stahlbeton No. 290, Wilhelm Ernst u. Sohn, Berlin, 43–101 (1977) (German).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 1979 I. Soroka

About this chapter

Cite this chapter

Soroka, I. (1979). Volume Changes in the Hardened Paste. In: Portland Cement Paste and Concrete. Palgrave, London. https://doi.org/10.1007/978-1-349-03994-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-03994-4_5

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-03996-8

  • Online ISBN: 978-1-349-03994-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics