Skip to main content
  • 130 Accesses

Abstract

The ability of concrete to withstand the damaging effects of the environment and of its service conditions without deterioration for a long period of time is referred to as its ‘durability’. Clearly the durability of concrete is of prime importance in engineering applications, and it is not surprising therefore that this subject has been widely discussed in a number of publications.1-5

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. RILEM, Durability of Concrete, Proceedings of an International Conference, Prague 1961, Czechoslovak Academy of Sciences, Prague (1962).

    Google Scholar 

  2. RILEM, Durability of Concrete Proceedings of an International Conference, Prague 1969, Academia Prague (1969).

    Google Scholar 

  3. Woods, H., Durability of Concrete Construction, ACI Monograph No. 4, American Concrete Institute, Detroit, Michigan (1968).

    Google Scholar 

  4. ACI Committee 201, ‘Durability of Concrete in Service’, ACI Manual of Concrete Practice, Part 1, American Concrete Institute, Detroit, Michigan (1973).

    Google Scholar 

  5. Swenson, E. G. (Technical Ed.), Performance of Concrete, University of Toronto Press (1968).

    Google Scholar 

  6. Hansen, W. C., Chairman Advisory Committee, ‘Twenty Year Report on the Long-Time Study of Cement Performance in Concrete’, Portland Cement Ass. Res. Dept. Bull., No. 175 (1965).

    Google Scholar 

  7. Miller, D. G. and Manson, P. W., ‘Long Time Tests of Concretes and Mortars Exposed to Sulphate Waters’, Bull. Min. Agric. Exp. Stn., No. 124 (1951).

    Google Scholar 

  8. US Bureau of Reclamation, Concrete Manual, 8th edn, US Department of the Interior, Denver, Colorado, 11 (1975).

    Google Scholar 

  9. Verbeck, G. J., ‘Field and Laboratory Studies of the Sulphate Resistance of Concrete’, reference 5, pp. 113.

    Google Scholar 

  10. ACI Committee, 211, ‘Recommended Practice for Selecting Proportions for Concrete’, ACI Manual of Concrete Practice, Part 1, American Concrete Institute, Detroit, Michigan (1973).

    Google Scholar 

  11. Bellport, B. P., ‘Combating Sulphate Attack on Concrete on Bureau of Reclamation Projects’, reference 5, p. 77.

    Google Scholar 

  12. Lea, F. M., The Chemistry of Cement and Concrete, 2nd edn, Edward Arnold, London, 439–443 (1970).

    Google Scholar 

  13. Lea, F. M., reference 12, p. 625.

    Google Scholar 

  14. Chambers’ Technical Dictionary Tweney, C. F. and Hughes, L. E. C., Editors, W & R Chambers, London, 621 (1964).

    Google Scholar 

  15. Karpinski, J. Y., ‘Substitution of Calcareous Sand (0.5–1.1 mm) for Quartz Sand to Sensibly Increase the Tensile Strength and Corrosion Resistance of Cement Mortar’, Rev. Mater. Constr. Tray. publ. No. 556, 15–24 (1962) (French).

    Google Scholar 

  16. Karpinski, J. Y., ‘Increasing the Corrosion Resistance of Micro-concrete by Limited Substitution of Calcareous for Quartz Aggregate’, Rev. Mater. Constr. Tray. pubL No. 568, 19–33 (1963) (French).

    Google Scholar 

  17. Jeffery, J. W. and Chatterji, S., ‘Further Evidence Relating to the New Hypothesis of Sulphate Expansion’, Mag. Concr. Res., 19, No. 60, 185–189 (1967).

    Google Scholar 

  18. Soroka, I. and Stern, N., ‘Effect of Calcareous Fillers on Sulphate Resistance of Portland Cement’, Bull. Am. Ceram. Soc., 55, No. 6, 594–595 (1976).

    Google Scholar 

  19. Spohn, E. and Lieber, E., ‘Reactions Between Calcium Carbonate and Portland Cement—Contribution to the System C3 A-Ca CO3 -H2 O and C4 AF-Ca CO3-H2O’, Zement-Kalk-Gips 18, No. 9, 483–485 (1965) (German).

    Google Scholar 

  20. Building Research 1964 HMSO, London, 55 (1965).

    Google Scholar 

  21. Chatterji, S. and Jeffery, J. W., ‘A New Hypothesis of Sulphate Expansion’, Mag. Concr. Res., 15, No. 44, 83–86 (1963).

    Article  Google Scholar 

  22. FIP, Recommendation for the Design and Construction of Concrete Sea-Structures, Cement and Concrete Association, London (1975).

    Google Scholar 

  23. RILEM, Behaviour of Concrete in Sea-Water, Symposium, Palermo, Italy 1965, Association Francaise de Recherches et d’Essais sur les Materiaux et les Construction, Paris (1968) ( French).

    Google Scholar 

  24. Lea, F. M., reference 12, p. 647.

    Google Scholar 

  25. Lea, F. M., reference 12, p. 667.

    Google Scholar 

  26. van Aardt, J. H. P., ‘Deterioration of Cement Products in Aggressive Media’, Proc. Symp. Chem. Cement Washington, 2, 835–853 (1960).

    Google Scholar 

  27. ACI Committee 515, ‘Guide for the Protection of Concrete Against Chemical Attack by Means of Coatings and Other Erosion Resistant Materials’, ACI Manual of Concrete Practice, Part 3, American Concrete Institute, Detroit, Michigan (1972).

    Google Scholar 

  28. RILEM, Winter Concreting, Symposium, Copenhagen (1956).

    Google Scholar 

  29. Cordon, W. A., Freezing and Thawing of Concrete-Mechanism and Control, ACI Monograph No. 3, American Concrete Institute, Detroit, Michigan (1966).

    Google Scholar 

  30. US Bureau of Reclamation, Investigation into the Effect of Water/Cement Ratio on Freezing Thawing Resistance of Non-air and Air-entrained Concrete, Concrete Laboratory Report No. C-810, Denver, Colorado (1955).

    Google Scholar 

  31. Möller, G., ‘Tests of Resistance of Concrete to Early Frost Action’, Proc. RILEM Symp. Winter Concreting, Special Report, Danish National Institute of Building Research, Copenhagen (1956).

    Google Scholar 

  32. Pink, A., Winter Concreting, Cement and Concrete Association, London (1974).

    Google Scholar 

  33. Nerenst, P., ‘Frost Action in Concrete’, Proc. Symp. Chem. Cement Washington, 2, 807–828 (1960).

    Google Scholar 

  34. Blenkinsop, J. C., ‘The Effect on Normal 3/8" Reinforcement of Adding Calcium Chloride to Dense and Porous Concretes’, Mag. Concr. Res., 15, No. 43, 33–38 (1963).

    Article  Google Scholar 

  35. ACI Committee 212, ‘Admixtures for Concrete’, ACI Manual of Concrete Practice, Part 1, American Concrete Institute, Detroit, Michigan (1973).

    Google Scholar 

  36. Monfore, G. E. and Verbeck, G. J., ‘Corrosion of Prestressed Wire in Concrete’, Proc. Am. Concr. Inst., 57, No. 5, 491–576 (1960).

    Google Scholar 

  37. Backstrom, J. E., Burrows, R. W., Mielenz, R. C., and Woldokoff, V. E., ‘Origin, Evaluation and Effects of Air Void System in Concrete’, Part 2: ‘Influence of Type and Amount of Air Entraining Agent’, Proc. Am. Concr. Inst., 55, No. 2, 261–272 (1958).

    Google Scholar 

  38. Mielenz, R. C., Woldokoff, V. E., Backstrom, J. E., and Burrows, R. W., ‘Origin, Evaluation and Effects of the Air Void System in Concrete’, Part 4: ‘The Air Void System in Job Concrete’, Proc. Am. Concr. Inst., 55, No. 4, 507–517 and 1353–1362 (1958).

    Google Scholar 

  39. Rhoades, R. and Mielenz, R. C., ‘Petrography of Concrete Aggregate’, Proc. Am. Concr. Inst., 42, No. 6, 581–604 (1946).

    Google Scholar 

  40. Lewis, D. W. and Dolch, W. L., ‘Porosity and Absorption’, Am. Soc. Test. Mater. Spec. Techn. Publ. No. 169A, ‘Significance of Tests and Properties of Concrete and Concrete Aggregates’, 303–313 (1956).

    Google Scholar 

  41. Verbeck, G. and Landgren, R., ‘Influence of Physical Characteristics of Aggregates on Frost Resistance of Concrete’, Proc. Am. Soc. Test. Mater., 60, 1063–1079 (1960).

    Google Scholar 

  42. Powers, T. C., ‘Basic Considerations Pertaining to Freezing and Thawing Tests’, Proc. Am. Soc. Test. Mater., 55, 1132–1155 (1955).

    Google Scholar 

  43. Schaler, C. H., ‘Durability of Concrete’, Proc. Highw. Res. Bd., 10, 132 (1930).

    Google Scholar 

  44. ACI Committee 621, ‘Selection and Use of Aggregates for Concrete’, ACI Manual of Concrete Practice, Part 1, American Concrete Institute, Detroit, Michigan (1973).

    Google Scholar 

  45. Menzel, C. A., ‘Tests of the Fire Resistance and Thermal Properties of Solid Concrete Slabs and Their Significance’, Proc. Am. Soc. Test. Mater., 43, 1099 (1943).

    Google Scholar 

  46. Petersen, P. H., ‘Resistance to Fire and Radiation’, reference 40, pp. 201–207 (1956).

    Google Scholar 

  47. Blackman, J. S., ‘Method of Estimating Water Content at the Time of Hardening’, Proc. Am. Concr. Inst., 50, No. 7, 533–541 (1954).

    Google Scholar 

  48. Saeman, J. C. and Washa, G. W., ‘Variation of Mortar and Concrete Properties with Temperature’, Proc. Am. Concr. Inst., 54, No. 5, 385–395 (1957).

    Google Scholar 

  49. Zoldners, N. G., Effect of High Temperatures on Concretes Incorporating Different Aggregates, Mines Branch Research Report No. R. 64, Department of Mines and Technical Surveys, Ottawa (1960).

    Google Scholar 

  50. Philleo, R., ‘Some Physical Properties of Concrete at High Temperature’, Proc. Am. Concr. Inst., 54, No. 10, 857–864 (1958).

    Google Scholar 

  51. Malhotra, H. L., ‘The Effect of Temperature on the Compressive Strength of Concrete’, Mag. Concr. Res., 8, No. 23, 85–94 (1956).

    Article  MathSciNet  Google Scholar 

  52. Lea, F. M., reference 12, p. 657.

    Google Scholar 

  53. ACI Committee 210, ‘Erosion Resistance of Concrete in Hydraulic Structures’, ACI Manual of Concrete Practice, Part 1, American Concrete Institute, Detroit, Michigan (1973).

    Google Scholar 

  54. Smith, F. L., ‘Effect of Aggregate Quality on Resistance of Concrete to Abrasion’, Am. Soc. Test. Mater. Spec. Tech. Publ., No. 205, 91–105 (1958).

    Google Scholar 

  55. Soroka, I., ‘Abrasion Test and Wear Resistance of Concrete Terrazzo Flooring Tiles’, Proc. ASTM/CEB/FIP Symp. Performance Concept in Buildings, National Bureau of Standards Special Publication No. 361, 1, 789–797 (1972).

    Google Scholar 

  56. Powers, T. C., ‘The Air requirement of Frost Resistant Concrete’, Proc. Highw. Res. Bd., 29, 184–202 (1949).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 1979 I. Soroka

About this chapter

Cite this chapter

Soroka, I. (1979). Durability of concrete. In: Portland Cement Paste and Concrete. Palgrave, London. https://doi.org/10.1007/978-1-349-03994-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-03994-4_10

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-03996-8

  • Online ISBN: 978-1-349-03994-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics