Advertisement

Distribution and release of Substance P in the central nervous system

  • A. C. Cuello
  • P. Emson
  • M. del Fiacco
  • J. Gale
  • L. L. Iversen
  • T. M. Jessell
  • I. Kanazawa
  • G. Paxinos
  • M. Quik
Part of the Biological Council book series

Abstract

Following the discovery of Substance P (SP) in extracts of equine gut and brain by von Euler and Gaddum (1931), a considerable number of studies have been carried out on the distribution and pharmacology of this substance in various mammalian tissues. The earlier work has been well reviewed by Lembeck and Zetler (1962). SP was found to be present in relatively high concentrations in various nervous tissues, particularly in sensory nerve pathways. The idea that SP might correspond to the ‘Sensory Transmitter Factor’ studied by Hellauer and Umrath (1947, 1948) in extracts of dorsal root was also suggested some 25 years ago by Lembeck (1953), and has been championed particularly vigorously since then by this author (Lembeck and Zetler, 1962 and Lembeck this volume, chapter 8). Latterly the work of Otsuka and his colleagues has provided strong support to the view that SP functions as a sensory transmitter in the spinal cord (Otsuka and Konishi, 1975). Earlier studies on SP were hampered by the limited availability of purified material, and by the lack of a simple, specific and sensitive assay method. This situation has changed dramatically since the elucidation by Leeman and her colleagues and by Studer et al. (1973) of the chemical structure of SP as an undecapeptide, (Chang and Leeman, 1970; Chang et al., 1971; Leeman and Mroz, 1974) and by the chemical synthesis of the peptide (Tregear et al., 1971) and the development of a radioimmunoassay technique (Powell et al., 1973). More recently, an immunohistochemical technique for visualising the cellular localisation of SP has been developed and applied by Nilsson et al. (1974).

Keywords

Substantia Nigra Dorsal Horn Ventral Tegmental Area Globus Pallidus Habenula Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angelucci, L. (1956). Br.J.Pharmac., 11, 161–170Google Scholar
  2. Atweh, S. F. and Kuhar, M. J. (1977). Brain Res., 124, 53–67CrossRefGoogle Scholar
  3. Belcher, G. and Ryall, R. W. (1977). J.Physiol,, Lond., (in press)Google Scholar
  4. Benuck, M. and Marks, N. (1975). Biochem. biophys. Res. Commun., 65, 153–60CrossRefGoogle Scholar
  5. Brownstein, M. J., Mroz, E. A., Kizer, J. S., Palkovits, M. and Leeman, S. E. (1976). Brain Res., 116, 299–305CrossRefGoogle Scholar
  6. Calvillo, O., Henry, J. L. and Neuman, R. S. (1974). Can.J.Physiol.Pharmac., 52, 1207–11CrossRefGoogle Scholar
  7. Catlin, D. H., Schaeffer, J. C. and Loewen, M. B. (1977). Life Sci., 20, 123–132CrossRefGoogle Scholar
  8. Chang, M. M. and Leeman, S. E. (1970). J. biol. Chem., 245, 4784–89Google Scholar
  9. Chang, M. M., Leeman, S. E. and Niall, H. D. (1971). Nature new Biot, 232, 86–87CrossRefGoogle Scholar
  10. Claybrook, D. L. and Pfiffner, J. J. (1968). Biochem.Pharmac., 17, 281–193CrossRefGoogle Scholar
  11. Coyle, J. T. and Schwarcz, R. (1976). Nature, 263, 244–46CrossRefGoogle Scholar
  12. Cuello, A. C., Polak, J. and Pearse, A. (1976). Lancet, ii, 1054–56CrossRefGoogle Scholar
  13. Cuello, A. C. and Kanazawa, I. (1977). J. comp. Neurol., (in press)Google Scholar
  14. Cuello, A. C., Jessell, T., Kanazawa, I. and Iversen, L. L. (1977a). J. Neurochem., (in press)Google Scholar
  15. Cuello, A. C., Emson, P. C., Jessell, T., and Paxinos, G. (1977b). Brain Res., (in press)Google Scholar
  16. Cuello, A. C., del Fiacco, M. and Paxinos, G. (1977c). Brain Res., (in press)Google Scholar
  17. De Robertis, E. (1964). Histophysiology of Synapses and Neurosecretion. Pergamon Press, OxfordGoogle Scholar
  18. Desbuquois, B. and Cuatrecasas, P. (1972). Nature new Biot, 236, 202–04CrossRefGoogle Scholar
  19. Davies, J. and Dray, A. (1976). Brain Res., 107, 623–27CrossRefGoogle Scholar
  20. Davies, J. and Dray A. (1977). Nature, 268, 351–52CrossRefGoogle Scholar
  21. Dray, A. and Straughan, D. W. (1976). J.Pharm.Pharmac., 28, suppl., 333–405CrossRefGoogle Scholar
  22. Duffy, M. J. and Powell, D. (1975). Biochim. biophys. Acta., 385, 275–80CrossRefGoogle Scholar
  23. Duffy, M. J., Mulhall, D. and Powell, D. (1975a). J. Neurochem., 25, 305–07CrossRefGoogle Scholar
  24. Duffy, M. J., Wong, J. and Powell, D. (1975b). Neuropharmacology, 14, 615–18CrossRefGoogle Scholar
  25. Duggan, A. W., Hall, J. G. and Headley, P. M. (1976). Nature, 264, 456–58CrossRefGoogle Scholar
  26. Emson, P. C., Kanazawa, I., Cuello, A. C. and Jessell, T. M. (1976). Biochem.Soc. Trans. 5, 187–89CrossRefGoogle Scholar
  27. Emson, P. C., Jessell, T., Paxinos, G. and Cuello, A. C. (1977). Brain Res., (submitted)Google Scholar
  28. Euler, U. S. von and Gaddum, J. H. (1931). J.Physiol., Lond, 72, 74–87CrossRefGoogle Scholar
  29. Euler, U. S. von and Lishajko, F. (1961). Proc.Scl.Soc.Bosnia Herzegovina, 1, 109–12Google Scholar
  30. Fonnum, F., Grofova, I., Rinvik, E., Storm-Mathisen, J. and Walberg, F. (1974). Brain Res., 71, 77–92CrossRefGoogle Scholar
  31. Gaddum, J. H. (1961). Pro c.Sci.Soc.Bosnia Herzegovina, 1, 7–13Google Scholar
  32. Gale, J. S., Bird, E. D., Spokes, E., Iversen, L. L. and Jessell, T. M. (1977). J. Neurochem., (in press)Google Scholar
  33. Hattori, T., McGeer, P. L., Fibiger, H. C. and McGeer, E. G. (1973). Brain Res., 54, 103–14CrossRefGoogle Scholar
  34. Hellauer, H. F. and Umrath, K. (1947). J.Physiol., Lond, 106, 20 PGoogle Scholar
  35. Hellauer, H. F. and Umrath, K. (1948). Pflügers Arch. ges. Physiol., 249, 619–30CrossRefGoogle Scholar
  36. Henry, J. L. (1976). Brain Res., 114, 439–51CrossRefGoogle Scholar
  37. Hökfelt, T., Kellerth, J. O., Nilsson, G. and Pernow, B. (1975a). Science, 190, 889–90CrossRefGoogle Scholar
  38. Hökfelt, T., Kellerth, J. O., Nilsson, G. and Pernow, B. (1975b). Brain Res., 100, 235–52CrossRefGoogle Scholar
  39. Hökfelt, T., Elde, R., Johansson, O., Luft, R., Nilsson, G. and Arimura, A. (1975c). Neuroscience, 1, 131–36CrossRefGoogle Scholar
  40. Hong, J. S., Costa, E. and Yang, H.-Y. T. (1977a). Brain Res., 118, 523–25CrossRefGoogle Scholar
  41. Hong, J. S., Yang, H.-Y. T., Racagni, G. and Costa, E. (1977b). Brain Res., 122, 541–44CrossRefGoogle Scholar
  42. Inouye, A., and Kataoka, K. (1962). Nature, 193, 585CrossRefGoogle Scholar
  43. Jessell, T. (1977a). Br.J.Pharmac., 59, 486 PGoogle Scholar
  44. Jessell, T. (1977b). J.Physiol., Lond, 270, 56–57 PGoogle Scholar
  45. Jessell, T. (1977c). Brain Res., (in press)Google Scholar
  46. Jessell, T. and Iversen, L. L. (1977). Nature, 268, 549–51CrossRefGoogle Scholar
  47. Jessell, T., Iversen, L. L. and Kanazawa, I. (1976). Nature, 264, 81–83CrossRefGoogle Scholar
  48. Jessell, T., Emson, P. C., Paxinos, G. and Cuello, A. C. (1977). Brain Res., (submitted)Google Scholar
  49. Jhamandas, K., Phillis, J. W. and Pinsky, C. (1971). Br.J.Pharmac., 43, 53–66CrossRefGoogle Scholar
  50. Kanazawa, I. and Jessell, T. (1976). Brain Res., 117, 362–67CrossRefGoogle Scholar
  51. Kanazawa, I., Emson, P. C. and Cuello, A. C. (1977a). Brain Res., 119, 447–53CrossRefGoogle Scholar
  52. Kanazawa, I., Bird, E., O’Connell, R. and Powell, D. (1977b). Brain Res., 120, 387–92CrossRefGoogle Scholar
  53. Kitahata, L. M., Kosaka, Y., Taub, A., Bonikos, K. and Hoffert, M. (1974). Anaesthesiology, 41, 39–48CrossRefGoogle Scholar
  54. Konishi, S. and Otsuka, M. (1974). Brain Res., 65, 397–410CrossRefGoogle Scholar
  55. Krnjevib, K. and Morris, M. E. (1974). Can.J.Physiol.Pharmac., 52, 736–44CrossRefGoogle Scholar
  56. Lamotte, C., Pert, C. B. and Snyder, S. H. (1976). Brain Res, 112, 407–12CrossRefGoogle Scholar
  57. Le Bars, D., Guilbaud, G., Jurna, I. and Besson, J. M. (1976). Brain Res, 115, 518–24CrossRefGoogle Scholar
  58. Leeman, S. E. and Mroz, E. A. (1974). Life Sci., 15, 2033–44CrossRefGoogle Scholar
  59. Lembeck, F. (1953). Naunyn-Schmiedebergs Arch. exp. Path. Pharmac., 219, 197–213Google Scholar
  60. Lembeck, F. and Holasek, A. (1960). Naunyn-Schmiedebergs Arch. exp. Path. Pharmac., 238, 542–45Google Scholar
  61. Lembeck, F. and Zetler, G. (1962), Int.Rev.Neurobiol., 4, 159–215CrossRefGoogle Scholar
  62. Loh, H. H., Brase, D. A., Sampath-Khanna, S., Mar, J. B., Leong-Way, E. and Li, C. H. (1976). Nature, 264, 567–68CrossRefGoogle Scholar
  63. McKelvy, J. F., LeBlanc, P., Laudes, C., Perrie, S., Grimm-Jorgensen, Y. and Kordon, C. (1976). Biochem. biophya Res.Commun., 73, 507–15CrossRefGoogle Scholar
  64. Miletić, V., Kovacs, M. and Randi6, M. (1977). Fedn Proc., 36, 1014Google Scholar
  65. Miller, R. J., Chang, K.-J, and Cuatrecasas, P. (1977). Biochem. biophys. Res. Commun., 74, 1311–17CrossRefGoogle Scholar
  66. Mroz, E. A., Brownstein, M. J. and Leeman, S. E. (1976). Brain Res., 113, 597–99CrossRefGoogle Scholar
  67. Nilsson, G., HSkfelt, T. and Pemow, B. (1974). Med. Biol., 52, 424–27Google Scholar
  68. Otsuka, M. and Konishi, S. (1975). Cold Spring Harb. Symp. quant. Biol., 40, 135–43CrossRefGoogle Scholar
  69. Otsuka, M. and Konishi, S. (1976). Nature, 264, 83–84CrossRefGoogle Scholar
  70. Phillis, J. W. and Limacher, J. J. (1974). Brain Res., 69, 158–63CrossRefGoogle Scholar
  71. Pickel, V. M., Reis, D. J. and Leeman, S. E. (1977). Brain Res., 122, 534–40CrossRefGoogle Scholar
  72. Powell, D., Leeman, S. E., Tregear, G. W., Niall, H. D. and Potts, J. T. Jr (1973). Nature new Biol., 241, 252–54CrossRefGoogle Scholar
  73. Przić, R. (1961). Proc.Sci.Soc.Bosnia.Herzegovina, 1, 71Google Scholar
  74. Quik, M. and Jessell, T. (1978) J. Neurochem., (in press)Google Scholar
  75. Richter, J. A. and Goldstein, A. (1970). Proc. natn. Acad. Sci. U.S.A., 66, 944–51CrossRefGoogle Scholar
  76. Ryall, R. W. (1962). Nature, 196, 680–81CrossRefGoogle Scholar
  77. Ryall, R. W. (1964). J.Neurochem., 11, 131–45CrossRefGoogle Scholar
  78. Saito, K., Konishi, S. and Otsuka, M. (1975). Brain Res, 97, 177–80CrossRefGoogle Scholar
  79. Schenker, C., Mroz, E. A. and Leeman, S. E. (1976). Nature, 264, 790–92CrossRefGoogle Scholar
  80. Shaw, J. E. and Ramwell, P. W. (1968). Am.J.Physiol., 215, 262–67Google Scholar
  81. Snyder, S. H. and Simantov, R. (1977). J.Neurochem., 28, 13–20CrossRefGoogle Scholar
  82. Steinacker, A. and Highstein, S. M. (1976). Brain Res., 114, 128–33CrossRefGoogle Scholar
  83. Stewart, J. M., Getto, C. J., Neldner, K., Reeve, E. B., Krivoy, W. A. and Zimmermann, E. (1976). Nature Lond, 262, 784–85CrossRefGoogle Scholar
  84. Studer, R. O., Trzeciak, A. and Lergier, W. (1973). Helv. chim. Acta., 56, 860–66CrossRefGoogle Scholar
  85. Takahashi, T. and Otsuka, M. (1975). Brain Res, 87, 1–11CrossRefGoogle Scholar
  86. Taube, H. D., Borowski, E., Endo, T. and Starke, K. (1976). Eur.J.Pharmac., 38, 377–80CrossRefGoogle Scholar
  87. Tregear, G. W., Niall, H. D., Potts, J. T. Jr, Leeman, S. E. and Chang, M. M. (1971). Nature new Biol., 232, 86–89CrossRefGoogle Scholar
  88. Whittaker, V. P. (1965). Progr. Biophys. molec. Biol., 15, 39–96CrossRefGoogle Scholar
  89. Yaksh, T. L. and Rudy, T. A. (1976). Science, 192, 1357–58CrossRefGoogle Scholar
  90. Zetler, G. (1956). Naunyn-Schmiedebergs Arch. exp. Path. Pharmac., 228, 513–38Google Scholar
  91. Zetler, G. and Schlosser, L. (1955). Naunyn-Schmiedebergs Arch. exp. Path. Pharmac., 224, 159–75Google Scholar
  92. Zigmond, R. and Ben-Ari, Y. (1976). J. Neurochem., 26, 1285–89CrossRefGoogle Scholar

Copyright information

© Institute of Biology Endowment Trust Fund 1978

Authors and Affiliations

  • A. C. Cuello
    • 1
  • P. Emson
    • 1
  • M. del Fiacco
    • 1
  • J. Gale
    • 1
  • L. L. Iversen
    • 1
  • T. M. Jessell
    • 1
  • I. Kanazawa
    • 1
  • G. Paxinos
    • 1
  • M. Quik
    • 1
  1. 1.MRC Neurochemical Pharmacology Unit, Department of PharmacologyMedical SchoolCambridgeUK

Personalised recommendations