Advertisement

Cutaneous and Proprioceptive Input to the Corpus Callosum in the Cat

  • T. Manzoni
  • G. Spidalieri
  • R. Caminiti
Chapter

Abstract

The callosal interhemispheric transfer enables animals to solve with the untrained paw somaesthetic discriminations involving the use of tactile or proprioceptive cues, at a level of performance as high as that reached by the trained paw. At least for cats, there is well-documented evidence that the interhemispheric transfer of somaesthetic discrimination learning takes place at the level of the somatosensory receiving areas (Teitelbaum et al., 1968). It was shown in fact, in callosum-intact cats, that the occurrence of the somaesthetic transfer is precluded either by the ablation of the first (SI) or of the second (SII) somatosensory area of the trained hemisphere and also by the ablation of SII, but not of SI, of the untrained hemisphere.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Caminiti, R., Manzoni, T., Michelini, S. and Spidalieri, G (1976). Callosal transfer of impulses originated from superficial and deep nerves of the cat forelimb. Arch. Ital. Biol., 114, 155–77PubMedGoogle Scholar
  2. Caminiti, R., Innocenti, G. M. and Manzoni, T. (1977). The ‘callosal zone’ in the first and second somatosensory areas of the cat. Neurosci. Abstr., 3, 66Google Scholar
  3. Ebner, F. F. and Myers, R. E. (1962). Direct and transcallosal induction of touch memories in the monkey. Science, 138, 51–52PubMedCrossRefGoogle Scholar
  4. Giaquinto, S., Pompeiano, O. and Sweet, J. E. (1963). EEG and behavioural effects of fore- and hindlimb muscular afferent volleys in unrestrained cats. Arch. Ital. Biol., 101, 133–68PubMedGoogle Scholar
  5. Innocenti, G. M., Manzoni, T. and Spidalieri, G. (1972). Risposte topiche callosali a stimoli cutanei. Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Nat., ser. VIII, 52, 952–59Google Scholar
  6. Innocenti, G. M., Manzoni, T. and Spidalieri, G. (1973). Relevance of the callosal transfer in defining the peripheral reactivity of somaesthetic cortical neurones. Arch. Ital. Biol., 111, 187–221PubMedGoogle Scholar
  7. Innocenti, G. M., Manzoni, T. and Spidalieri, G. (1974). Patterns of the somaesthetic messages transferred through the corpus callosum. Expl Brain Res., 19, 447–66CrossRefGoogle Scholar
  8. Jones, E. C. and Powell, T. P. S. (1968). The commissural connections of the soma-tic sensory cortex in the cat. J. Anat., 103, 433–55PubMedPubMedCentralGoogle Scholar
  9. Jones, E. G. and Powell, T. P. S. (1970). An electron microscopic study of the laminar pattern and mode of termination of afferent fibre pathways in the somatic sensory cortex of the cat. Phil. Trans. R. Soc., B. 257, 45–62CrossRefGoogle Scholar
  10. Manzoni, T., Michelini, S. and Spidalieri, G. (1975). Transfer callosale di impulsi profondi di diversa origine recettoriale. Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Nat., ser. VIII, 58, 656–61Google Scholar
  11. Mark, R. F. and Steiner, J. (1958). Cortical projection of impulses in myelinated cutaneous afferent nerve fibres of the cat. J. Physiol., Lond., 142, 544–62PubMedPubMedCentralCrossRefGoogle Scholar
  12. Matthews, P. B. C. (1972). Mammalian Muscle Receptors and their Central Actions, Edward Arnold, LondonGoogle Scholar
  13. Mountcastle, V. B. (1974). Neural mechanisms in somaesthesia. In Medical Physiology, vol. I (V. B. Mountcastle, ed.), Mosby, St Louis, pp. 307–47Google Scholar
  14. Oscarsson, O. and Rosén, I. (1963). Projections to cerebral cortex of large muscle-spindle afferents in forelimb nerves of the cat. J. Physiol., Lond., 169, 924–45PubMedPubMedCentralCrossRefGoogle Scholar
  15. Oscarsson, O. and Rosén, I. (1966). Short-latency projections to the cat’s cerebral cortex from skin and muscle afferents in the contralateral forelimb. J. Physiol., Lond., 182, 164–84PubMedPubMedCentralCrossRefGoogle Scholar
  16. Pompeiano, O. and Sweet, J. E. (1962). Identifrcationof cutaneous and muscular afferent fibres producing EEG synchronization and arousal in normal cats. Arch. ItaL Biol., 100, 343–80PubMedGoogle Scholar
  17. Robinson, D. L. (1973). Electrophysiological analysis of interhemispheric relations in the second somatosensory cortex of the cat. Expl Brain Res., 18, 131–44CrossRefGoogle Scholar
  18. Rosén, I. (1972). Projection of forelimb Group I muscle afferents to the cat cere-bral cortex. Int. Rev. Neurobiol., 15, 1–25PubMedCrossRefGoogle Scholar
  19. Schaltenbrand, G., Spuler, H. and Wahren, W. (1970). Electroanatomy of the corpus callosum radiation according to the facts of stereotaxic stimulation in man. Z. Neurol., 198, 79–92PubMedGoogle Scholar
  20. Silfvenius, H. (1970a). Characteristics of receptors and afferent fibres of the forelimb interosseous nerve of the cat. Acta physiol. scand., 79, 6–23PubMedCrossRefGoogle Scholar
  21. Silvenius, H. (1970b). Projections to the cerebral cortex from afferents of the interosseous nerve of the cat. Acta physiol. Iscand., 80, 196–214CrossRefGoogle Scholar
  22. Silfvenius, H. (1972). Properties of cortical Group I neurones located in the lower bank of the anterior suprasylvian sulcus of the cat. Acta physiol. scand., 84, 555–76PubMedCrossRefGoogle Scholar
  23. Sweet, J. E. and Bourassa, C. M. (1967). Comparison of sensory discrimination threshold with muscle and cutaneous nerve volleys in the cat. J. NeurophysioL, 30, 530–45Google Scholar
  24. Teitelbaum, H., Sharpless, S. K. and Byck, R. (1968). Role of somatosensory cortex in interhemispheric transfer of tactile habits. J. comp. physiol. Psychol., 66, 623–32PubMedCrossRefGoogle Scholar
  25. Toyama, K., Matsunami, K., Ohno, T. and Tokashiki, S. (1974). An intracellular study of neuronal organization in the visual cortex. Expl Brain. Res., 21, 45–66CrossRefGoogle Scholar

Copyright information

© I. Steele Russell, M. W. van Hof and G. Berlucchi 1979

Authors and Affiliations

  • T. Manzoni
  • G. Spidalieri
  • R. Caminiti

There are no affiliations available

Personalised recommendations