Ultrastructure and Conduction Properties of Visual Callosal Axons of the Rabbit

  • Harvey A. Swadlow
  • Stephen G. Waxman


The corpus callosum of most mammals is comprised of both myelinated and nonmyelinated axons, most of which are less then 1 μm in diameter (Fleischhauer and Wartenberg, 1967; Seggie and Berry, 1972; Tomasch, 1954; Tomasch and MacMillan, 1957; Waxman and Swadlow, 1976a). Characteristics of impulse conduction along such axons in the central nervous system are relatively unstudied. In the present chapter we review our work on the ultrastructure and conduction properties of visual callosal axons of the rabbit and also present preliminary data on the conduction properties of callosal axons of the macaque monkey.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bennett, M. V. L. (1968). Neural control of electric organs. In The Central Nervous System and Fish Behavior (D. Ingle, ed.), University of Chicago Press, pp. 14769Google Scholar
  2. Bergmans, J. (1973). Physiological observations on single human nerve fibres. In New Developments in Electromyography and Clinical Neurophysiology, vol. 2 (J. E. Desmedt, ed.), Karger, Basel, pp. 89–127Google Scholar
  3. Berlucchi, G. and Rizzolatti, G. (1968). Binocularly driven neurons in visual cortex of split-chiasm cats. Science, 159, 308–10PubMedCrossRefGoogle Scholar
  4. Berlucchi, G., Heron, W., Hyman, R., Rizzolatti, G. and Umilta, C. (1971). Simple reactions times of ipsilateral and contralateral hand to lateralized visual stimuli. Brain, 94, 419–30PubMedCrossRefGoogle Scholar
  5. Bishop, G. H. and Smith, J. M. (1964). The size of nerve fibers supplying the cerebral cortex. Expl Neurol., 9, 483–501CrossRefGoogle Scholar
  6. Bishop, P. O., Burke, W., and Davis, R. (1962). Single-unit recording from anti-dromically activated optic radiation neurons. J. PhysioL, Lond., 162, 432–50PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bliss, T. V. P. and Rosenberg, M. E. (1974). Supernormal conduction velocity in the olfactory nerve of the tortoise. J. PhysioL, Lond., 239, 60–61 PGoogle Scholar
  8. Bullock, T. H. (1951). Facilitation of conduction rate in nerve fibers. J. PhysioL, Lond., 114, 89–97PubMedPubMedCentralCrossRefGoogle Scholar
  9. Chung, S., Raymond, S. A. and Lettvin, J. (1970). Multiple meaning in single visual units. Brain, Behay. Evol., 3, 72–101CrossRefGoogle Scholar
  10. Fleischhauer, K. and Wartenberg, H. (1967). Elektronenmikroskopische Untersuchungen über das Wachstum der Nervenfasern and über das Auftreten Von Markscheiden im Corpus Callosum der Katze. Z. Zellforsch., 83, 568–81PubMedCrossRefGoogle Scholar
  11. Gardner-Medwin, A. R. (1972). An extreme supernormal period in cerebellar parallel fibers. J. PhysioL, Lond., 22, 357–71CrossRefGoogle Scholar
  12. Gasser, H. S. (1950). Unmedullated fibers originating in dorsal root ganglia. J. gen. PhysioL, 33, 651–90PubMedPubMedCentralCrossRefGoogle Scholar
  13. Gilliatt, R. W. and Willison, R. G. (1963). The refractory and supernormal periods of the human median nerve. J. Neurol, Neurosurg. Psychiat., 26, 136–43CrossRefGoogle Scholar
  14. Hall, J. L. (1965). Binaural interaction in the accessory superior olivary nucleus of the cat. J. Acoust. Soc. Am., 37, 814–23PubMedCrossRefGoogle Scholar
  15. Hirano, A. and Dembitzer (1967). A structural analysis of the myelin sheath in the central nervous system. J. Cell. Biol., 34, 555–67PubMedPubMedCentralCrossRefGoogle Scholar
  16. Hubbard, J. I. and Willis, W. D. (1962). Hyperpolarization of mammalian motor nerve terminals. J. PhysioL, Lond., 163, 115–37PubMedPubMedCentralCrossRefGoogle Scholar
  17. Hursh, J. B. (1939). Conduction velocity and diameter of nerve fibers. Am. J. PhysioL, 127, 131–39Google Scholar
  18. Lass, Y. and Abeles, M. (1975). Transmission of information by the axon: I. Noise and memory in the myelinated nerve fiber of the frog. BioL Cyb., 19, 61–67CrossRefGoogle Scholar
  19. Naito, H., Miyakawa, F. and Ito, N. Diameters of callosal fibers interconnect-ing cat sensorimotor cortex (1971). Brain Res., 27, 369–72PubMedCrossRefGoogle Scholar
  20. Newman, E. A. and Raymond, S. A. (1971). Activity dependent shifts in excitability of frog peripheral nerve axons. Q. Prog. Rep., M.I.T. Res. Lab. Electronics, 102, 165–87Google Scholar
  21. Paintal, A. S. (1967). A comparison of the nerve impulses of mammalian non-medullated nerve fibres with those of the smallest diameter medullated fibres. J. PhysioL, Lond., 193, 523–33PubMedPubMedCentralCrossRefGoogle Scholar
  22. Phillips, C. G. (1959). Actions of antidromic pyramidal volleys on single Betz cells in the cat. Q. JI exp. PhysioL, 44, 1–25CrossRefGoogle Scholar
  23. Phillips, C. G., Powell, T. P. S. and Shepherd, G. M. (1963). Responses of mitral cells to stimulation of the lateral olfactory tract in the rabbit. J. PhysioL, Lond., 168, 65–88PubMedPubMedCentralCrossRefGoogle Scholar
  24. Rushton, W. A. H. (1951). A theory of the effects of fibre size in medullated nerve. J. Physiol., Lond., 115, 101–22PubMedPubMedCentralCrossRefGoogle Scholar
  25. Seggie, J. and Berry, M. (1972). Ontogeny of interhemispheric evoked potentials in the rat: significance of myelination of the corpus callosum. Expl Neurol., 35, 215–32CrossRefGoogle Scholar
  26. Swadlow, H. A. (1974a). Properties of antidromically activated callosal neurons and neurons responsive to callosal input in rabbit binocular cortex. Expl Neurol., 43, 424–44CrossRefGoogle Scholar
  27. Swadlow, H. A. (1974b). Systematic variations in the conduction velocity of slowly conducting axons in the rabbit corpus callosum. Expl Neurol., 43, 445–51CrossRefGoogle Scholar
  28. Swadlow, H. A. (1977). Relationship of the corpus callosum to visual areas I and II of the rabbit. Expl Neurot, 57, 516–31CrossRefGoogle Scholar
  29. Swadlow, H. A. and Waxman, S. G. (1975). Observations on impulse conduction along central axons. Proc. natn Acad. Sci. U.S.A., 72, 5156–59CrossRefGoogle Scholar
  30. Swadlow, H. A. and Waxman, S. G. (1976). Variations in conduction velocity and excitability following single and multiple impulses of visual callosal axons in the rabbit. Expl Neurol., 53, 128–50CrossRefGoogle Scholar
  31. Swadlow, H. A., Rosene, D. and Waxman, S. G. (1979). Characteristics of interhemispheric impulse conduction between prelumate gyri of the Rhesus monkey. Expl Brain Res. in pressGoogle Scholar
  32. Takeuchi, A. and Takeuchi, N. K. (1962). Electrical changes in the pre- and post- synaptic axons of the giant synapse of Loligo. J. gen. Physiol., 45, 1181–93PubMedCrossRefGoogle Scholar
  33. Tomasch, J. (1954). Size, distribution and number of fibers in the human corpus callosum. Anat. Rec., 119, 119–35PubMedCrossRefGoogle Scholar
  34. Tomasch, J. and MacMillan (1957). The number of fibers in the corpus callosum of the white mouse (1957). J. comp. Neurol, 107, 165–68PubMedCrossRefGoogle Scholar
  35. Waxman, S. G. and Bennett, M. V. L. (1972). Relative conduction velocities of small myelinated and nonmyelinated fibres in the central nervous system. Nature New Biol., 238, 217–19PubMedCrossRefGoogle Scholar
  36. Waxman, S. G. and Melker, R. J. (1971). Closely spaced nodes of Ranvier in the mammalian brain. Brain Res., 32, 445–48PubMedCrossRefGoogle Scholar
  37. Waxman, S. G. and Swadlow, H. A. (1976a). Morphology and physiology of visual callosal axons: evidence for a supernormal period in central myelinated axons. Brain Res., 113, 179–87PubMedCrossRefGoogle Scholar
  38. Waxman, S. G. and Swadlow, H. A. (1976b). Ultrastructure of visual callosal axons in the rabbit. Expl Neurol., 53, 115–27CrossRefGoogle Scholar
  39. Yasargil, G. M. and Diamond, J. (1968). Startle-response in Teleost fish: an elementary circuit for neural discrimination. Nature (Lond.), 230, 241–43CrossRefGoogle Scholar

Copyright information

© I. Steele Russell, M. W. van Hof and G. Berlucchi 1979

Authors and Affiliations

  • Harvey A. Swadlow
  • Stephen G. Waxman

There are no affiliations available

Personalised recommendations