Skip to main content

Part of the book series: Air Pollution Problems Series ((AIRPP))

  • 244 Accesses

Abstract

Input parameters such as diffusion constants and inversion heights are the permanent basic problems of atmospheric modelling. Quite often they are inserted into the computational formulae based on the results of previous experiences made in more or less similar conditions. The next step, that of computing diffusion parameters from real-time monitoring network observations and of using them as input values, was performed by Shieh et al. (1970, 1972). They expressed the diffusion parameters as

(8.1)

with i = x, y, z and where a i (x) is the diffusion parameter at a distance x, u is the wind velocity, t is the diffusion time and α, p are constants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bankoff, S. G., and Hanzevack, E. L., Jr. (1973). Parameter updating for air pollution dispersion model. Proc. Symp. Am. Inst. Chem. Eng. Natl Meet. Air Pollut. Modelling, New Orleans, La

    Google Scholar 

  • Bankoff, S. G. (1975). The adaptive filtering transport model for predicting and control of pollutant concentration in an urban airshed. Atmos. Environ.,9,793–808

    Article  CAS  Google Scholar 

  • Breiman, L., and Meisel, W. S.(1976) Empirical techniques for analyzing air quality and meteorological data, part Ill, short–term changes in ground–level ozone concentrations: an empirical analysis. US Environ. Prot. Agency, Publ. No. EPA–600/4–76–029c, 73 pp.

    Google Scholar 

  • Buell, C. E.(1975). Objective procedures for optimum location of air pollution observation stations. US Environ. Prot. Agency, Publ. No. EPA–650/4–75–005, 215 pp.

    Google Scholar 

  • Busch, N. (1973). Proc. 4th Meet. North Atlantic Treaty Organ. - Comm. Challenges Modern Soc. Expert Panel Air Pollut. Modelling, Oberursel, 28 to 30 May 1973

    Google Scholar 

  • Calder, K. L. (1973). Personal communication to N. Busch.

    Google Scholar 

  • Desalu, A. A., Gould, L. A., and Schweppe, F. C. (1974). Dynamic estimation of air pollution. Inst. Electr. Electron. Eng. Autom. Control, 19, 904–10

    Google Scholar 

  • Gustafson, S. A., Kortanek, K. O., and Sweigart, J. R. (1976). Numerical optimisation technique in air quality modelling. US Environ. Prot. Agency, Publ., No. EPA–600/4–76–058, 42 pp.

    Google Scholar 

  • Hino, M. (1973). Statistical prediction method of environmental pollution combining theory and multi-variate analysis. Proc. Jpn. Soc. Civil Eng. Tokyo Environ. Problems Symp., 3 to 4 December 1973, pp.32–6 (in Japanese)

    Google Scholar 

  • Hino, M.(1977).On-line prediction system of air pollution by statistical and control theories (FRAK). Proc. 4th Int. Clean Air Congr., Tokyo, 16 to 20 May 1977 pp. 334–7

    Google Scholar 

  • Hino, M., Mori, G., and Yoshikawa, S. (1973). Prediction of atmospheric pollution by Kalman filter. J. Jpn. Soc. Air. Pollut., 8, p. 402 (in Japanese)

    Google Scholar 

  • Hino, M. (1974). Trans. Jpn. Soc. Civil Eng., 224, 79–90

    Article  Google Scholar 

  • Hino, M., and Tajima, T. (1974). Prediction of pollutant concentration by phase-regression analysis. J. Jpn. Soc. Air Pollut., 9, 276 (in Japanese)

    Google Scholar 

  • Horie, Y. (1972). Air pollution modelling, simulation and control. Kansas State Univ., Manhattan, Kansas, Thesis, 174 pp.

    Google Scholar 

  • Horie, Y., and Fan, L. T. (1973). Air pollution forecasting by an adaptive method. Simulation, 119–25

    Google Scholar 

  • Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Trans. Am. Soc. Mech. Eng., Ser. D, J. Basic Eng., 82, 35–45

    Google Scholar 

  • Kalman,R. E., Lapidus, L., and Shapiro, R. (1960). Computer control of processes. Chem. Eng. Prog., 5655–61

    CAS  Google Scholar 

  • Lee, R. C. K. (1964). Optimal Estimation, Identification and Control, Mass. Inst. Technol. Press, Cambridge, Mass.

    Google Scholar 

  • Mehra, R. K. (1971). Identification of stochastic linear dynamic systems using Kalman filter representation. Aircraft Ind. Assoc. Am. J., 9, 28–31

    Google Scholar 

  • Meisel, W. S. (1976). Empirical techniques for analysing air quality and meteorological data, part I, the role of empirical methods in air quality and meteorological analysis. US Environ. Prot. Agency, Publ., No. EPA–600/4–76–029a, 66 pp.

    Google Scholar 

  • Meisel, W. S., and Teener, M. D. (1976). Empirical techniques, part II, feasibility study of a source-oriented empirical air quality simulation model. US Environ. Prot. Agency, Publ., No. EPA-600/4–029b, 61 pp.

    Google Scholar 

  • Pooler, F. J. (1961). A prediction model for mean urban pollution for use with standard wind roses. Int. J. Air Water Pollut., 4, 199–211

    Google Scholar 

  • Seinfeld, J. H. (1969). Mathematical models of air quality control regions, Development of Air Quality Standards (eds A. Atkisson and R. S. Gaines), Merrill, Columbus, Ohio

    Google Scholar 

  • Shieh, L. J., Davidson, B., and Friend, J. P. (1970). A model of diffusion in urban atmospheres: sulphur dioxide in Greater New York. Proc. Symp. Multiple–source Urban Diffusion Models (ed. A. Stern), US Environ. Prot. Agency, Publ., No. AP–86, pp. 10–1–10–38

    Google Scholar 

  • Shieh, L. J., Halpern, P. K., Clemens, B. A., Wang, H. H., and Abraham, F. F. (1972). Air quality diffusion model; application to New York city. IBM J. Res. Dev., No. 3, 162–70

    Article  Google Scholar 

  • Takamatsu, T., Naito, M., Hiraoka, M., Kawata, K., and Mizoguchi (1971). Computer control system for preventing air pollution. Proc. 2nd Int. Clean Air Congr., Washington, D.C., 6 to 11 December 1970 (eds H. M. Englund and W. T. Beery), Academic Press, New York, pp. 1135–43

    Google Scholar 

  • Ulbrich, E. A. (1967). Adapredictive air pollution control for Los Angeles basin. Proc.Assoc. Comput. Mach. Annu. Symp. Appl. Comput. to Problem Urban Soc., 10 November 1967

    Google Scholar 

  • Wayne, L. G. (1969). Development of Air Quality Standards (eds A. Atkisson and R. S. Gaines), Merrill, Columbus, Ohio, pp. 186–99, discussion

    Google Scholar 

  • Wells, C. H. (1971). Application of modern estimation and identification techniques to chemical processes. Am. Inst. Chem. Eng. J.,17, 966–73

    Article  CAS  Google Scholar 

  • Wells, C. H., and Lau, R. W. J. (1971). Stochastic modelling and control of ambient air quality: a new approach. Proc. Inst. Electr. Eng. Western Electron. Show Cony., San Francisco, Calif, 24 to 27 August 1971, Paper, No. 32/5, 8 pp.

    Google Scholar 

  • Yokoyama, O. (1973). The development of an air pollution monitoring system. Proc. 3rd Int. Clean Air Congr., Düsseldorf 8 to 12 October 1973, VDI-Verlag, Düsseldorf, pp. C137–C139

    Google Scholar 

  • Yokoyama, O. (1977). The air pollution forecast and control system (APMS). Proc. 4th Int. Clean Air Congr., Tokyo, J, 16 to 20 May 1977 pp. 329–33

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 1980 Michel M. Benarie

About this chapter

Cite this chapter

Benarie, M.M. (1980). Empirical techniques. In: Urban Air Pollution Modelling. Air Pollution Problems Series. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-03639-4_8

Download citation

Publish with us

Policies and ethics