Multi-box models

  • Michel M. Benarie
Part of the Air Pollution Problems Series book series (AIRPP)


The boundary between the numerical advection—diffusion methods of volume elements and the multi-box models tends to be blurred. In the latter, the region to be studied is divided into cells not necessarily identical in area and height. No diffusion between the boxes is assumed; the concentration in each cell or box is considered uniform. This is perhaps the most important difference from previously outlined models where a (variable) diffusion constant had to be used. As Scriven and Fisher (1975) pointed out, in the ideal box model infinite diffusivity inside the individual box is assumed. The mass-conservation equation is solved for each of the boxes. The uniform concentration within a particular box at any time is a function of the box volume, of the rate at which material is being imported, of the emission rate, of the concentration within the box in the preceding time increment and of the residual fractions of these three terms in describing the amount of material remaining in the box. For box n, the functional relationship is, as expressed by Reiquam (1969, 1970, 1971),
where xn,t is the concentration, Vn.t the volume, qn.t the rate at which pollutants are advected into box n, Q n.t the emission rate within box n, rn.t the residual of x n,t-1 remaining, rn.t the residual of Qn.t remaining, p n.t the residual of remaining, all at the end of time increment, and x n.t-1 the concentration in box n at time t −1. The residual fractions are simple geometrical relationships between the resultant wind vector and the box dimensions.


Wind Speed Street Canyon Source Strength North Atlantic Treaty Organ Photochemical Smog 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albrecht, F., and Grunow, J. (1935). Ein Beitrag zur Frage der vertikalen Luftzirkulation in der Grosstadt. Meteorol. Z.,52, 103–8 (in German)Google Scholar
  2. Benarie, M. (1978). The simple box model revisited. Atmos. Environ.,12, 1929–30CrossRefGoogle Scholar
  3. British Government (1945). Atmospheric pollution in Leicester. Dep. Sci. Ind. Res.,Tech. Paper, No.1, 161 pp.Google Scholar
  4. Calder, K. L. (1969). A narrow-plume simplification for multiple urban source models. UnpublishedGoogle Scholar
  5. Cantoni, C. E., Gualdi, R., and Santomauro, L. (1975). Preliminary report about a diffusion model for Milan, Italy, urban area: Gifford–Hanna model. Proc. 6th North Atlantic Treaty Organ.–Comm. Challenges Modern Soc. Int. Tech. Meet. Air Pollut. Modelling, Frankfurt, 24 to 26 September 1975, pp. 93–124Google Scholar
  6. Clarke, J. F. (1964). A simple diffusion model for calculating point concentrations from multiple sources. J. Air Pollut. Control Assoc.,14, 347–52CrossRefGoogle Scholar
  7. Dickerson, M. H. (1975). MASCON—a mass-consistent atmospheric flux model for regions with complex topography. Lawrence Livermore Lab., Univ. Calif:, Preprint, No. UCRL-76157, Rev.1, 14 pp.Google Scholar
  8. Duewer, W. H., MacCracken, M. C., and Walton, J. J. (1976). The Livermore regional air quality model, II, verification and sample application to the San Francisco bay area. J. Appl. Meteorol., in the pressGoogle Scholar
  9. Feldstein, M., MacCracken, M. C., and Reinisch, R. F. (1973). Development of an air pollution model for the San Francisco bay area. Bay Area Air Pollut. Control Dist., Publ., No. GI-36390, 139 pp.Google Scholar
  10. Friedlander, S. K., and Seinfeld, J. H. (1969). A dynamic model of photochemical smog. Environ. Sci. Technol., 3, 1175–81CrossRefGoogle Scholar
  11. Funabashi, N. (1973). A real-time air pollution prediction by a multi-box model. (Text in Japanese). Proc. 14th Annu. Meet. Jpn. Soc. Air Pollut., Fukushima, 6 to 8 November 1973, Paper, No. 50Google Scholar
  12. Gear, C. W. (1971). The automatic integration of ordinary differential equations. Commun. Assoc. Comput. Mach., 4, 176–9Google Scholar
  13. Georgii, H. W., Busch, E., and Weber, E. (1967). Untersuchung über die zeitliche und räumliche Verteilung der Immission-Konzentration des Kohlenmonoxid in Frankfurt am Main. Ber. Inst. Meteorol. Geophys., Univ. Frankfurt, No.11, 60 pp. (in German)Google Scholar
  14. Gifford, F. (1959). Computation of pollution from several sources. Int. J. Air Pollut.,2, 109Google Scholar
  15. Gifford, F. (1970). Atmospheric diffusion in an urban area. Proc. 2nd IRPA Conf., Brighton, 5 May 1970, 5 pp.Google Scholar
  16. Gifford, F. (1972). Applications of a simple urban pollution model. Proc. Conf. Urban Environ. and 2nd Conf. Biometeorol., Philadelphia, Pa, 31 October to 2 November 1972 , pp.62–3Google Scholar
  17. Gifford, F. (1973). The simple ATDL urban air pollution model. Proc. 4th Meet. North Atlantic Treaty Organ.–Comm. Challenges Modern Soc. Expert Panel Air Pollut. Modelling, Oberursel, 28 to 30 May 1973, pp. XVI-I–XVI-18Google Scholar
  18. Gifford, F. (1974a). Further ATDL urban air pollution models. Air Res.Atmos.Turbulence and Diffusion Lab., US Natl Oceanic Atmos. Admin., Oak Ridge, Tenn., Rep., No.93, 9 pp.Google Scholar
  19. Gifford, F. (1974b). Further comparison of urban air pollution models. Proc. 5th Meet.North Atlantic Treaty Organ.–Comm. Challenges Modern Soc. Expert Panel Air Pollut. Modelling, Roskilde, 4 to 6 June 1974 , pp. 38–1–38–9Google Scholar
  20. Gifford, F. A., and Hanna, S. R. (1971). Urban air pollution modelling. Proc. 2nd Int. Clean Air Congr., Washington, D.C. 6 to 11 December 1970 (eds H. M. Englund and W. T. Beery), Academic Press, New York, pp. 1146–51CrossRefGoogle Scholar
  21. Gifford, F. A. (1973). Modelling urban air pollution. Atmos. Environ., 7, 131–6CrossRefGoogle Scholar
  22. Goodman, T. R. (1964). Application of integral methods to transient non-linear heat transfer. Adv. Heat Transfer,51–122Google Scholar
  23. Gronskei, K. E. (1972). A three-dimensional transport model for air pollution in an urban area with application to sulphur dioxide concentration in Oslo. Norw. Inst. Air Res., Kjeller, Rep., No. EO 000769, 30 pp.Google Scholar
  24. Gronskei, K. E. (1973). A simulation of the short-term variation in the sulphur dioxide concentration in Oslo during inversion. VDI Ber.,200, 149–56Google Scholar
  25. Halpern, P., Simon, C., and Randall, L. (1971). Source emission and the vertically integrated mass flux of sulphur dioxide across New York city area. J. Appl. Meteorol., 10, 715–24CrossRefGoogle Scholar
  26. Hameed, S. (1974). A modelling multi-cell method for simulation of atmospheric transport. Atmos. Environ., 8, 1003–8CrossRefGoogle Scholar
  27. Hanna, S. R. (1971). A simple method of calculating dispersion from urban area sources. J. Air Pollut. Control Assoc.,21, 774–7CrossRefGoogle Scholar
  28. Hanna, S. R. (1973a). Urban air pollution models—why? Proc. Nordic Symp. Urban Air Pollut.Modelling, Vedbaek, 3 to 5 October 1973, 19 pp.Google Scholar
  29. Hanna, S. R. (1973b). Application of a simple model of photochemical smog. Proc. 3rd Int.Clean Air Congr., Düsseldorf, 8 to 12 October 1973, VDI-Verlag, Düsseldorf, pp. B72 - B74Google Scholar
  30. Hanna, S. R. (1978). Diurnal variation of the stability factor in the simple ATDL urbandispersion model. J. Air Pollut. Control Assoc.,28, 147–50CrossRefGoogle Scholar
  31. Hanna, S. R. (1973c). A simple dispersion model for the analysis of chemically reactive pollutants. Atmos. Environ.,7, 803–17CrossRefGoogle Scholar
  32. Hanna, S. R. (1974). Atmos. Environ.,8, 529–30CrossRefGoogle Scholar
  33. Hindmarsh, A. C., and Gelinas, R. J. (1971). Ordinary differential equation system solver. Lawrence Livermore Lab., Univ. Calif., Publ., No. UCID-30001Google Scholar
  34. Holzworth, G. C. (1972). Mixing heights, wind speeds and potential for urban air pollution throughout the contiguous United States. US Environ. Prot. Agency, Publ., No. AP-101, 118 pp.Google Scholar
  35. Ishikawa, Y., Yagi, Y., Oshio, T., Kure, F., and Yoneda, A. (1973). Approaches to the design of calculating analysis on air pollution in Osaka, part 3. J. Jpn. Soc. Air Pollut.,8, 514 (in Japanese)Google Scholar
  36. Kontnik, L. T. (1974). A multi-layer mixing cell model for the estimation of urban air pollution concentrations. Univ. North Carolina, Chapel Hill, M.S. ThesisGoogle Scholar
  37. Lamb, R. G., and Seinfeld, J. H. (1974). A simple dispersion model for the analysis of chemically reactive pollutants. Atmos. Environ., 8, 527–9CrossRefGoogle Scholar
  38. Leahy, D. M. (1975). An application of simple advective pollution model to the city of Edmonton. Atmos. Environ.,9, 817–23CrossRefGoogle Scholar
  39. Lebedeff, S. A., and Hameed, S. (1975). Study of atmospheric transport over area sources by an integral method. Atmos. Environ.,9, 333–8CrossRefGoogle Scholar
  40. MacCracken, M. C., Crawford, T. V., Peterson, K. R., and Knox, J. B. (1971). Development of a multi-box air pollution model and initial verification for the San Francisco bay area. Lawrence Livermore Lab., Univ. Calif, Rep., No. UCRL-73348, 96 pp.Google Scholar
  41. MacCracken, M. C. (1972). The initial application of a multi-box air pollution model to the San Francisco bay area. Lawrence Livermore Lab., Univ. Calif., Rep., No. UCRL-73944, 8 pp.Google Scholar
  42. MacCracken, M. C., Wuebbles, D. J., Walton, J. J., Duewer, W. H., and Grant, K. E. (1976). The Livermore regional air quality model, I, concept and development. Lawrence Livermore Lab., Univ. Calif., Preprint, No. UCLRL-77475, Pt. 1, Rev. 2, 76 pp.; submitted for publication to J. Appl. Meteorol.Google Scholar
  43. Miller, M. E., and Holzworth, G. C. (1967). An atmospheric diffusion model for metropolitan areas. J. Air Pollut. Control Assoc.,17, 46–50CrossRefGoogle Scholar
  44. Nicholson, S. (1975). A pollution model for street level. Atmos. Environ., 9, 19–31.CrossRefGoogle Scholar
  45. Okamoto, S., et al. (1976). Air quality simulation by multi-box model, I, application to the calculation of carbon monoxide concentration, II, analysis of photochemical air pollution. J. Jpn. Soc. Air Pollut., 11 (in Japanese)Google Scholar
  46. Olsson, L. E. (1973). Proc. 4th Meet. North Atlantic Treaty Organ. — Comm. Challenges Modern Soc. Expert Panel Air Pollut. Modelling, Oberursel, 28 to 30 May 1973 discussionGoogle Scholar
  47. Ragland, K. (1973). Multiple-box model for dispersion of air pollutants from area sources. Atmos. Environ.,7, 1017–32CrossRefGoogle Scholar
  48. Ragland, K. W., Dennis, R. L., and Wilkening, K. E. (1975). Boundary-layer model for transport of urban air pollutants. Proc. Natl. Meet. Am. Inst. Chem. Eng., New York, 18 March 1975, Paper, No. 47eGoogle Scholar
  49. Randerson, D. (1970). A numerical experiment in simulating the transport of sulphur dioxide through the atmosphere. Atmos. Environ.,4, 615–22CrossRefGoogle Scholar
  50. Reiquam, H. E. (1969). Construction and evaluation of an airshed-episode model for air resource management. Oregon State Univ., Ph.D. Thesis, 100 p.Google Scholar
  51. Reiquam, H. E. (1970). An atmospheric transport and accumulation model for airsheds. Atmos.Environ.,4, 233–7CrossRefGoogle Scholar
  52. Reiquam, H. E. (1971). Preliminary trial of a box model in the Oslo airshed. Proc. 2nd Int. Clean Air Congr., Washington, D.C., 6 to I1 December 1970 (eds H. M. Englund and W. T. Beery), Academic Press, New York, pp. 1131–5CrossRefGoogle Scholar
  53. Roberts, P. J. W., Roth, P. M., and Nelson, C. L. (1971). Contaminant emission in the Los Angeles basin—their sources, rates and distribution. Syst. Appl. Inc., Rep., No. 71-SAI-6Google Scholar
  54. Rose, A. H., Smith, R., McMichael, W. F., and Kouse, R. E. (1964). Comparison of auto exhaust emission from two major cities. J. Air Pollut. Control Assoc.,15, 362–6CrossRefGoogle Scholar
  55. Santomauro, L., Gualdi, R., and Tebaldi, G. (1977). Air pollution behaviour in Milano, Italy, metropolitan area through a diffusion model. Proc. 4th Int. Clean Air Congr., Tokyo, 16 to 20 May 1977, pp. 251–4Google Scholar
  56. Schlichting, H. (1968). Boundary Layer Theory, McGraw-Hill, New York, chapter 10, 647 pp.Google Scholar
  57. Scriven, R. A., and Fisher, B. E. A. (1975). The long-distance transport of airborne material and its removal by deposition and washout, I, II. Atmos. Environ.,9, 49–68CrossRefGoogle Scholar
  58. Sheleikhovski, G. V. (1949). Smoke pollution of towns. US Natl Sci. Found. and US Dep. Commerce, Publ., 203 pp. (Isr. Programme Sci. Transl., 1961 )Google Scholar
  59. Shiozawa, K., Ootaki, A., and Okatomo, S. (1973). A multiple-box model for estimating air pollution in urban areas. Bull. Sci. Eng. Res. Lab., Waseda Univ.,61, 40–7 (in Japanese)Google Scholar
  60. Sklarew, R. (1973). Personal communication to S. R. HannaGoogle Scholar
  61. Slade, D. H. (1967). Modelling air pollution in the Washington, D.C., to Boston megalopolis. Science, 157, 1304–7CrossRefGoogle Scholar
  62. Smith, M. E. (1961). The concentration and residence time of pollutants in the atmosphere. Proc. Int. Symp. Chem. Reactions Lower Upper Atmos., San Francisco, Stanford Res. Inst., Adv. Papers, pp. 273–86Google Scholar
  63. Summers, P. W. (1976). An application of a simple advective model to the city of Edmonton. Atmos. Environ., 10, 567–9CrossRefGoogle Scholar
  64. Tennekes, H. (1976). Observations on the dynamics and statistics of the simple box models with a variable inversion lid. Proc. 3rd. Symp. Atmos. Turbulence, Diffusion Air Quality, Raleigh, N. C., 19 to 22 October 1976, Am. Meteorol. Soc., Boston, Mass., pp. 397–402Google Scholar
  65. Velds, C. A. (1972). Air pollution episodes and mathematical models. Proc. 3rd Meet. North Atlantic Treaty Organ.–Comm. Challenges Modern Soc. Expert Panel Air Pollut. Modelling, Paris, 2 to 3 October 1972, pp. XIV-1–XIV-10Google Scholar
  66. Wayne, L., Danchik, R., Weisburd, M., Kokin, A., and Stein, A. (1971). Modelling photochemical smog on a computer for decision making. J. Air Pollut. Control Assoc.,21, 334–40CrossRefGoogle Scholar
  67. Wayne, L. G., Kokin, A., and Weisburd, M. I. (1973). Controlled evaluation of the reactive environmental simulation model (REM), vol. I, US Environ. Prot. Agency, Final Rep., No. EPA–R5–73–013a, PB–220, 160 pp.Google Scholar
  68. Weisburd, M., Wayne, L. G., Danchik, R., and Kokin, A. (1971). Development of a simulation model for estimating level concentrations of photochemical pollutants. Syst. Dey. Corp., Santa Monica, Calif, Rep., 191 pp. (Contract, No. CPA-70–151)Google Scholar

Copyright information

© Michel M. Benarie 1980

Authors and Affiliations

  • Michel M. Benarie
    • 1
  1. 1.Institut National de Recherche Chimique AppliquéeVert-le-PetitFrance

Personalised recommendations