Advertisement

The conservative volume element

  • Michel M. Benarie
Part of the Air Pollution Problems Series book series (AIRPP)

Abstract

Modern methods of atmospheric research, including air pollution calculations, are based on well-known physical laws related to what is usually called a ‘volume element’, ‘parcel’ or ‘box’ of air. Such an element is a volume of identifiable air that maintains some sort of integrity as it moves around from point to point.

Keywords

Nitric Oxide Sulphur Dioxide Street Canyon Grid Model Nitrogen Dioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeles, F. B., Cracker, L. E., Forrence, L. E. and Leather, G. R. (1971). Fate of air pollutants: removal of ethylene, sulphur dioxide and nitrogen dioxide by soil. Science,173, 914–16CrossRefGoogle Scholar
  2. Altshuller, A. P. (1975). Evoluation of oxidant results at CAMP sites in the United States. J. Air Pollut. Control Assoc.,25, 19–24CrossRefGoogle Scholar
  3. Altshuller, A. P. and Bufalini, J. J. (1965). Photochemical aspects of air pollution: a review. Photochem. Photobiol., 4, 96–146CrossRefGoogle Scholar
  4. Altshuller, A. P. (1971). Photochemical aspects of air pollution: a review. Environ. Sci. Technol.,5, 39–64CrossRefGoogle Scholar
  5. Anthes, R. A., and Seaman, N. (1976). Diffusion of a passive contaminant over complex terrain under stable and unstable conditions. Proc. 3rd Symp. Atmos. Turbulence, Diffusion Air Quality, Raleigh, N.C., 19 to 22 October 1976., Am. Meteorol. Soc., Boston, Mass., pp. 449–454Google Scholar
  6. Ashmore, B. C., Burnett, M. G., and Tyler, B. J. (1962). Reaction of nitric oxide and oxygen. Trans. Faraday Soc.,28, 685–91CrossRefGoogle Scholar
  7. Atkins, D. H. F., Cox, R. A., and Eggelton, A. E. J. (1972). Photochemical ozone and sulphuric acid aerosol formation in the atmosphere over southern England. Nature (London),235, 372–6CrossRefGoogle Scholar
  8. Becus, G. A. (1978). A stochastic model of air pollution. Proc. 13th Int. Colloq. Inst. Natl Rech. Chim. Appl., Paris, 25 to 28 April 1978, PreprintGoogle Scholar
  9. Bergstrom, R. W., Jr., and Viskanta, R. (1973). Modelling the effects of gaseous and particulate pollutants in the urban atmosphere, part I, thermal structure, part II, pollutant dispersion. J. Appl. Meteorol.,12, 901–18CrossRefGoogle Scholar
  10. Bilger, R. W. (1974). Oxidants and their precursors in the atmosphere. Dep. Environ. Conservation, Canberra, Aust. Publ., part I, 61 pp., part II, 63 pp.Google Scholar
  11. Bird, R. B., Stewart, W. E., and Lightfoot, E. N. (1964). Transport Phenomena, Wiley, New York, 780 pp.Google Scholar
  12. Blackadar, A. K., and Dutton, J. A. (1970). Tracers in the air. Weatherwise, Aug., 182–5Google Scholar
  13. Brock, F. V. (1962). Analogue computing techniques applied to atmospheric diffusion: continuous-area source. Proc. Symp. Air over Cities, Cincinnati, Ohio, 6 to 7 November 1961; SEC, Tech. Rep., No. A62–5, pp. 173–88Google Scholar
  14. Calvert, J. G., Demerjian, K. L., and Kerr, J. A. (1973). The effect of carbon monoxide on the chemistry of photochemical smog systems. Environ. Lett., 4, 281–95CrossRefGoogle Scholar
  15. Cermak, J. E. (1971). Laboratory simulation of atmospheric boundary layer. Aircraft Ind. Assoc. Am. J.,9, 1746–54Google Scholar
  16. Chang, P. C., Wang, P. N., and Lin, A. (1971). Turbulent diffusion in a city street. Proc. Symp. Air Pollut., Turbulence Diffusion, Las Cruces, N. M., 7 to 10 December 1971, New Mexico State Univ. Press, Las Cruces, pp. 137–44Google Scholar
  17. Chovin, P., and Roussel, A. (1973). Physicochimie et Physiopathologie des Polluants Atmosphériques, Masson, Paris, 303 pp. (in French)Google Scholar
  18. Clyne, M. A. A., Thrush, B. A., and Wayne R. P. (1964). Kinetics of the chemiluminescent reaction between nitric oxide and ozone. Trans. Faraday Soc., 60, 359–70CrossRefGoogle Scholar
  19. Coffey, P. E., and Stasiuk, W. N. (1975). Evidence of atmospheric transport of ozone into urban areas. Environ. Sci. Technol.,9, 59–62CrossRefGoogle Scholar
  20. Derwent, R. G. (1971). The relationship between chimney heights and the extent of oxidation of nitric oxide to nitrogen dioxide in the plume. Warren Spring Lab., Stevenage, Rep., No. LR-159 (AP), 9 pp.Google Scholar
  21. Derwent, R. G., and Stewart, H. N. M. (1973a). Air pollution from the oxides of nitrogen in the United Kingdom. Atmos. Environ.,7, 385–401CrossRefGoogle Scholar
  22. Derwent, R. G. (1973b). Elevated ozone levels in the air of central London. Nature (London) ,241, 342CrossRefGoogle Scholar
  23. Dickerson, M. H. (1975). MASCON—a mass-consistent atmospheric flux model for regions with complex topography. Lawrence Livermore Lab., Univ. Calif:, Preprint, No. UCRL-76157, Rev. 1, 14 pp.Google Scholar
  24. Djuric, D., and Thomas, J. C. (1971). A numerical study of convective transport of gaseous pollutants in the vicinity of tall buildings. Proc. Symp. Air Pollut., Turbulence Diffusion, Las Cruces, N. M., 7 to 10 December 1971, New Mexico State Univ. Press, Las Cruces, pp. 24–34Google Scholar
  25. Donaldson, Coleman du P., and Hilst, G. R. (1972). Effect of inhomogeneous mixing on atmospheric photochemical reactions. Environ. Sci. Technol.,6, 812–16CrossRefGoogle Scholar
  26. Dreyer, H. S., Smith, S. U., Wald, G. A., Hoydysh, W. G., and Pulis, L. C. (1977). A sensitivity study of the DEPICT computer program. J. Air Pollut. Control Assoc.,27, 1203–1205CrossRefGoogle Scholar
  27. Egan, B., and Lavery, T. F. (1973). Application of a numerical simulation model to the dispersion of vehicular emissions near highways. Proc. 3rd Int. Clean Air Congr., Düsseldorf, 6 to 10 October 1973, VDI-Verlag, Düsseldorf, pp. B7 — B9Google Scholar
  28. Egan, B. A., and Mahoney, J. R. (1971). A numerical model of urban air pollution transport. Proc. Am. Meteorol. Soc.—Air Pollut. Control Assoc. Meet. Air Pollut. Meteorol., Raleigh, N. C., 5 to 9 April 1971, pp. 8–12Google Scholar
  29. Egan, B. A. (1972a). Numerical modelling of advection and diffusion of urban area surface pollutants. J. Appl. Meteorol., 11, 312–22CrossRefGoogle Scholar
  30. Egan, B. A. (1972b). Application of a numerical air pollution model to dispersion in the atmospheric boundary layer. J. Appl. Meteorol., 11, 1023–39CrossRefGoogle Scholar
  31. Eschenroeder, A. Q., and Martinez, J. R. (1971). Concepts and applications of photochemical smog models. Gen. Res. Corp., Santa Barbara, Calif, Tech. Memo., No.1516, 124 pp.Google Scholar
  32. Eschenroeder, A. Q., Martinez, J. R., and Nordsieck, R. A. (1972). Evaluation of a diffusion model for photochemical smog simulation. Gen. Res. Corp., Santa Barbara, Calif., Publ. No. 68–02–0336; US Environ. Prot. Agency, Rep. No. EPAR4–73–012a, 211 pp.Google Scholar
  33. Fabrick, A. J., and Sklarew, R. C. (1975). Cross evaluation of regional air pollution models. Proc. 68th Annu. Meet. Air Pollut. Control Assoc., Boston, Mass., 15 to 20 June 1975, Paper, No. 75–04.6, 15 pp.Google Scholar
  34. Friedlander, S. K., and Seinfeld, J. H. (1969). A dynamic model of photochemical smog. Environ. Sci. Technol.,3, 1175–181CrossRefGoogle Scholar
  35. Fromm, J. E. (1969). Practical investigation of convective difference approximations of reduced dispersion. Phys. Fluids, 12, suppl. II, 3–12Google Scholar
  36. Galbally, I. E. (1971a). Surface ozone observation at Aspendale, Victoria, 1964–70. Atmos. Environ.,5, 15–25CrossRefGoogle Scholar
  37. Galbally, I. E. (1971b). Preliminary discussion on some oxidant measurements at Vlaardingen,the Netherlands. Atmos. Environ.,5, 187CrossRefGoogle Scholar
  38. Georgii, H. W., Busch, E., and Weber, E. (1967). Untersuchung über zeitliche und räumliche Verteilang der Immission-Konzentration des Kohlenmonoxid in Frankfurt am Main. Ber. Inst. Meteorol. Geophys., Univ. Frankfurt, No.11, 60 pp. (in German)Google Scholar
  39. Gifford, F. A., and Hanna, S. R. (1975). Modelling urban air pollution. Atmos. Environ.,9, 267–75CrossRefGoogle Scholar
  40. Goodin, W. R. (1975). A computational study of the transport of air pollutants in a mixing layer. School Eng. Appl. Sci., Univ. Calif., Los Angeles, Calif., ThesisGoogle Scholar
  41. Goodin, W. R., McRae, G. J., and Seinfeld, J. H. (1976). Validity and accuracy of atmospheric air quality models. Proc. 3rd Symp. Atmos. Turbulence, Diffusion Air Quality, Raleigh, N.C., 9 to 12 October 1976, Am. Meteorol. Soc., Boston, Mass., pp. 366–73Google Scholar
  42. Grennfelt, P. (1975). Measurement of ozone in Gothenburg, January 1972 to August 1973, and studies of covariations between ozone and other pollutants. Swed. Water Air Pollut. Res. Lab., Gothenburg, Publ., No. B, 221, 9 pp. + appendixesGoogle Scholar
  43. Gronskei, K. E. (1974). Requirements of air quality models for land use planning. Proc. 5th Meet. North Atlantic Theory Organ. — Comm. Challenges Modern Soc. Expert Panel Air Pollut. Modelling., Roskilde, 4 to 6 June 1974, pp. 11–1–11–29Google Scholar
  44. Halliday, E. C., and Venter, G. (1971). A numerical experiment in simulating the transport of sulphur dioxide through the atmosphere (by D. Randerson). Atmos. Environ., 5, 815–18, discussionGoogle Scholar
  45. Hameed, S. (1974). Atmos. Environ.8,555–61, discussionCrossRefGoogle Scholar
  46. Hawke, G. S., and Iverach, D. (1974). A study of high photochemical pollution days in Sydney, N.S.W. Atmos. Environ.,8, 597–608CrossRefGoogle Scholar
  47. Hecht, T. (1973). Workshop on Mathematical Modelling of Photochemical Smog, US Environ. Prot. Agency, Rep. No. EPA–R4–73–010, 42 pp., appendix AGoogle Scholar
  48. Hecht, T. A., and Seinfeld, J. H. (1972). Development of validation of a generalised mechanism for photochemical smog. Environ. Sci. Technol.,6, 47–57CrossRefGoogle Scholar
  49. Hilst, G. R., Donaldson, Coleman du P., Teske, M., Contiliano, R. and Freiberg, J. (1973). The development and preliminary application of an invariant coupled diffusion and chemical model. Aeronaut. Res. Ass. Princeton Inc., US Natl Aeronaut. Space Admin., Contract. Rep., No. NASA-CR-2295, 82 pp.Google Scholar
  50. Hirt, C. W., and Cook, J. L. (1972). Calculating three-dimensional flows around structures and over rough terrain. J. Comput. Phys.,10, 324–40CrossRefGoogle Scholar
  51. Hotchkiss, R. S. (1971). The numerical calculation of three-dimensional flows of air and particulates about structures. Proc. Symp. Air Pollut., Turbulence, Diffusion, Las Cruces, N.M., 7 to 10 December 1971, New Mexico State Univ. Press, Las Cruces, pp. 35–42Google Scholar
  52. Hotchkiss, R. S., and Harlow, F. H. (1973). Air pollution transport in street canyons. US Environ. Prot. Agency, Rep., No. EPA–R4–73–029, 117 pp.Google Scholar
  53. Hoydysh, W. G., and Sabetta, F. (1975). A new procedure for calculating dispersion in complex topographies. Proc. 68th Annu. Meet. Air Pollut. Control Assoc., Boston, Mass., 15 to 20 June 1975, Paper, No. 75–14.4, 14 pp.Google Scholar
  54. Jacobson, J. S., and Salottolo, G. D. (1975). Photochemical oxidants in the New York—New Jersey metropolitan area. Atmos. Environ.,9, 321–32CrossRefGoogle Scholar
  55. Johnson, W. B., Dabberdt, W. F., Ludwig, F. L., and Allen, R. J. (1971). Field•study for initial evaluation of an urban diffusion model for carbon monoxide. Stanford Res. Inst., Rep. (Project, No. 8563 ), 144 pp.Google Scholar
  56. Johnston, H. S., and Jost, D. M. (1949). The kinetics of the rapid gas reaction between ozone and nitrogen dioxide. J. Chem. Phys.,17, 386–92CrossRefGoogle Scholar
  57. Jost, D. (1970). Survey of the distribution of trace substances in pure and polluted atmospheres. J. Pure Appl. Chem.,24, 643–54CrossRefGoogle Scholar
  58. Joynt, R. C., and Blackman, D. R. (1976). A numerical model of pollutant transport. Atmos. Environ.,10, 433–42CrossRefGoogle Scholar
  59. Junge, C. (1963). Air Chemistry and Radioactivity, Academic Press, New York, 382 pp.Google Scholar
  60. Kanitz, S. (1976). Possibility of formation of photochemical smog in Italy: laboratory synthesis and determination of PAN in the air of Genova. J. Igiene Med. Prev.,8, 324–34Google Scholar
  61. Karplus, W. J., Bekey, G. A., and Pekrol, P. J. (1958). Atmospheric diffusion of pollutants: analogue computer study. Ind. Eng. Chem., No.11, 50Google Scholar
  62. Kita, T. (1972). A doubt about so-called new-type photochemical smog. Proc. Union J. Sci. Eng. Int. Symp. Air Pollut., Tokyo, 17 to 19 October 1972, pp. 427–40 (in Japanese)Google Scholar
  63. Kitabayashi, K., Sugawara, K., and Isomura, S. (1977). A wind tunnel study of automobile exhaust gas diffusion in an urban district. Proc. 4th Int. Clean Air Congr., Tokyo, 16 to 20 May 1977, pp. 192–5Google Scholar
  64. Kiyohide, T., and Kimura, F. (1975). Simplified Euler treatment of the diffusion equation and its application to Tokyo area. Proc. Jpn. Meteorol. Soc. Spring Meet., Tokyo, 21 to 23 May 1975, p. 59Google Scholar
  65. Lamb, R. G. (1968). An air pollution model for Los Angeles. Univ. Calif, Los Angeles, Calif, M.S. ThesisGoogle Scholar
  66. Lamb, R. G., and Neiburger, M. (1971). An interim version of a generalised urban air pollution model. Atmos. Environ., 5, 239–64CrossRefGoogle Scholar
  67. Lamb, R. G., and Seinfeld, J. H. (1973). Mathematical modelling of urban air pollution. Environ. Sci. Technol.,2, 253–61CrossRefGoogle Scholar
  68. Lange, R. (1973). ADPIC—a three-dimensional computer code for the study of pollutant dispersal and deposition under complex conditions. Lawrence Livermore Lab., Univ. Calif, Rep., No. TID-4500, UC-32, 60 pp.Google Scholar
  69. Lange, R. (1975). ADPIC—a three-dimensional transport-diffusion model for the dispersal of atmospheric pollutants and its validation against regional tracer studies. Proc. 1st Conf. Regional Mesoscale Modelling, Anal. Prediction, Las Vegas, Nev., 6 to 9 May 1975, Am. Meteorol. Soc., Boston, Mass., 16 pp.Google Scholar
  70. Lebedeff, S. A., and Hameed, S. (1975). Study of atmospheric transport over area sources by an integral method. Atmos. Environ.,9, 333–8CrossRefGoogle Scholar
  71. Leighton, P. A. (1961). Photochemistry of Air Pollution Academic Press, New York, 300 pp., 456 referencesGoogle Scholar
  72. Liu, C. Y., and Goodin, W. R. (1976a). A two-dimensional model for the transport of pollutants in an urban basin. Atmos. Environ.,10, 513–26CrossRefGoogle Scholar
  73. Liu, C. Y., and Goodin, W. R. (1976b). An iterative algorithm for objective wind field analysis. Mon. Weather Rev.,104, 784–92CrossRefGoogle Scholar
  74. Liu, M. K. (1977). Development of mathematical models for simulating power plant plumes. Proc. 4th Int. Clean Air Congr., Tokyo, 16 to 20 May 1977, pp. 310–14Google Scholar
  75. Liu, M. K., and Seinfeld, J. H. (1975). On the validity of grid and trajectory models of urban air pollution. Atmos. Environ.,9, 555–74CrossRefGoogle Scholar
  76. Ludwig, F. L., and Dabberdt, W. F. (1972). Evaluation of the APRAC-lA urban diffusion model for carbon monoxide. Stanford Res. Inst., Rep., 115 pp (Project, No. 8563, Contract, No. CAPA-3–68 (1–69)) (Natl. Tech. Inf. Serv., No. NTIS-PB-210 819 )Google Scholar
  77. Magnus, D., and Schechter, H. (1967). Analysis and application of the Padé approximation for the integration of chemical kinetic equations. Gen. Appl. Sci. Lab. Inc., Tech. Rep., No. 642Google Scholar
  78. Mahoney, J. R., and Egan, B. A. (1970). A mesoscale numerical model of atmospheric phenomena in urban areas. Proc. 2nd Int. Clean Air Congr., Washington, D.C., 6 to 11 December 1970, (eds H. M. Englund and W. T. Beery), Academic Press, New York, pp. 1152–7Google Scholar
  79. Mahoney, J. R., Egan, B. A., and Reifenstein, E. C. (1973). Hackensack Meadowlands air pollution study development and validation of a modelling technique for predicting air quality levels. US Environ. Prot. Agency, Final Rep., No. EPA-450/374–056cn, 92 pp.Google Scholar
  80. Marziano, G. L., Sutera, A., Gianolio, L., and Ciprion, M. (1975). Application of a three-dimensional diffusion model to the study of sulphur dioxide distribution in the Venice area and its verification. Proc. Semin. Air Pollut. Modelling, Venice, 27 to 28 November 1975Google Scholar
  81. Meroney, R. N., Peterka, J. A., Hatcher, R. V., and Kothari, K. (1977). Gaseous dispersion and turbulence in the wake of clear reactor plants. Proc. 4th Int. Clean Air Congr., Tokyo, 16 to 20 May 1977, pp. 167–70Google Scholar
  82. Molenkamp, C. R. (1968). Accuracy of finite-difference methods applied to the advection equation. J. Appl. Meteorol.,7, 160–7CrossRefGoogle Scholar
  83. Nishida, K., Yamamoto, T., Itakura, Y., and Mizuta, K. (1977). Wind tunnel experiments on atmospheric diffusion of automobile exhaust gases due to highway traffic. Proc. 4th Int. Clean Air Congr., Tokyo, 16 to 20 May 1977, pp. 196–200Google Scholar
  84. Nunge, R. J. (1974). Application of an analytical solution for unsteady advective diffusion to dispersion in the atmosphere, I, II. Atmos. Environ.,8, 969–1001CrossRefGoogle Scholar
  85. Nunge, R. J., and Subramanian, R. S. (1975). Atmospheric dispersion of gaseous pollutants from continuous source—a model of an industrial city. Proc. 79th Natl Meet. Am. Inst. Chem. Eng., Houston, Texas, 19 March 1975, Paper, No.47f, 53 pp.Google Scholar
  86. Nunge, R. J., and Vaidyanathan, K. R. (1977). A note on atmospheric dispersion with chemical reaction. Atmos. Environ., 11, 853–6CrossRefGoogle Scholar
  87. OCDE (1974). Report on the problem of photochemical oxidants and their precursors in the atmosphere. Environ. Directorate, Paris, France, Doc., No. NR-ENV-74.48, 105 pp.Google Scholar
  88. Odaira, T. (1972). Photochemical smog in Tokyo. Tokyo Metropolitan Res. Inst. Environ. Prot., Publ., 72 pp.Google Scholar
  89. Pandolfo, J. P., Atwater, M. A., and Anderson, G. E. (1971). Prediction by numerical models of transport and diffusion in an urban boundary layer. Cent. Environ. Man, Hartford, Conn., Publ., 139 pp. (Contract, No. CPA-70–62)Google Scholar
  90. Pandolfo, J. P., and Jacobs, C. A. (1973a). Vol. I, tests of an urban meteorological pollutant model using carbon monoxide validation in the Los Angeles metropolitan area. US Environ. Prot. Agency, Rep., No. EPA–R4–73–025a, 176 pp.Google Scholar
  91. Pandolfo, J. P. (1973b). Vol. II, FORTRAN programme and input–output specification. US Environ. Prot. Agency, Rep., No. EPA–R4–73–025b, 141 pp.Google Scholar
  92. Pandolfo, J. P., Jacobs, C. A., Ball, R. J., and Atwater, M. A. (1976). Refinement and validation of an urban meteorological pollutant model. US Environ. Prot. Agency, Publ., No. EPA–600/4–76–037, 32 pp.Google Scholar
  93. Pedersen, L. B., and Prahm, L. P. (1973). A method for the numerical solution of the advection equation. Dan. Meteorol. Inst., Air Pollut. Sect., Publ., 36 pp.Google Scholar
  94. Pedersen, L. B. (1974). A method for numerical solution of the advection equation. Telhus,26, 594–602Google Scholar
  95. Penkett, S. A., Sandalls, F. J., and Lovelock, J. E. (1975). Observations of peroxyacetyl nitrate (PAN) in air in southern England. Atmos. Environ.,9, 139–40CrossRefGoogle Scholar
  96. Pielke, R. (1972). Comparison of hydrostatic and anelastic dry shallow primitive equation model. US Dep. Comm., Environ. Res. Lab., Boulder, Colo., US Natl Oceanic Atmos. Admin., Tech. Memo., No. ERL OD-13, 47 pp.Google Scholar
  97. Pitts, J. N., and Finlayson, B. J. (1975). Mechanisms of photochemical air pollution. Angew. Chem., Int. Edn Engl.,14, 1–15CrossRefGoogle Scholar
  98. Plassmann, E., Leisen, P., and Sobotka, H. (1977). Atmospheric dispersion of motor vehicle exhaust gases in urban areas. Proc. 4th Int. Clean Air Congr., Tokyo, 16 to 20 May 1977, pp. 238–41Google Scholar
  99. Price, H. S., Varga, R. S., and Warren, J. E. (1966). Application of oscillation matrices to diffusion–convection equations. J. Math. Phys., 45, 301–31CrossRefGoogle Scholar
  100. Quickert, N., and Dubois, L. (1973). Some factors affecting the ambient ozone concentrations measured in Ottawa. Sci. Total Environ.,2, 81–7CrossRefGoogle Scholar
  101. Randerson, D. (1970). A numerical experiment in simulating the transport of sulphur dioxide through the atmosphere. Atmos. Environ.,4, 615–22CrossRefGoogle Scholar
  102. Ranzieri, A. J., and Tilden, J. W. (1977). An application of DEPICT (detailed examination of pollutant impact in complex terrain). State Calif. Air Resources Board, DraftGoogle Scholar
  103. Reed, L. E., and Barrett, C. F. (1965). Air pollution from road traffic measurements in Archway Road, London. Int. J. Air Water Pollut.,9, 357–65Google Scholar
  104. Reynolds, S. D. (1973). Urban air shed photochemical simulation model study, vol. I, development and evaluation, appendix D, numerical integration of continuity equations. US Environ. Prot. Agency, Rep. No. EPA–R4–73–030e, 45 pp.; vol. II, user’s guide and description of computer programmes. US Environ. Prot. Agency, Rep. No. EPA–R4–73–030f, 193 pp.Google Scholar
  105. Reynolds, S. D., Meyer, J. P., Hecht, T. A., Whitney, D. C., Ames, J., and Yocke, M. A. (1976). Continued research in mesoscale air pollution modelling, II, Refinements in the treatment of chemistry, meteorology and numerical integration procedures. US Environ. Prot. Agency, Publ., No. EPA–600/4–76–016b, 287 pp.Google Scholar
  106. Reynolds, S. D., Roth, P. M., and Seinfeld, J. H. (1973). Mathematical modelling of photochemical air pollution, I, formulation of the model. Atmos. Environ., 7, 103361; US Environ. Prot. Agency, Rep., Nos. EPA–R4–73–030a–EPA–R4–73–030dGoogle Scholar
  107. Riley, J. J., Liu, H. T., and Geller, E. W. (1976). A numerical and experimental study of stably stratified flow around complex terrain. US Environ. Prot. Agency, Publ., No. EPA–600/4–76–021Google Scholar
  108. Roberts, P. J. W., Roth, P. M., and Nelson, C. L. (1971). Contaminant emission in the Los Angeles basin—their sources, rates and distribution. Syst. Appl. Inc., Beverley Hills, Calif., Rep., No. 71-SAI-6Google Scholar
  109. Robinson, E., and Robbins, R. C. (1968). Sources, abundance and rate of gaseous atmospheric pollutants. Stanford Res. Inst., Rep.Google Scholar
  110. Roth, P. M., Reynolds, P. J. W., and Seinfeld, J. H. (1971). Development of a simulation model for estimating ground-level concentrations of photochemical pollutants. Syst. Appl. Inc., Beverley Hills, Calif, Final Rep., No. 71-SAI-21, 55 pp.Google Scholar
  111. Roth, P. M., Roberts, P. J. W., Liu, M. L., Reynolds, S. D., and Seinfeld, J. H. (1974). Mathematical modelling of photochemical air pollution, II, a model and inventory of pollutant emissions. Atmos. Environ.,8, 97–130CrossRefGoogle Scholar
  112. Runca, E., and Sardei, F. (1975). Numerical treatment of time-dependent advection and diffusion of air pollutants. Atmos. Environ.,9, 69–80CrossRefGoogle Scholar
  113. Runchal, A. K., Bealer, A. W., and Segal, G. S. (1978). A completely random-walk model for atmospheric dispersion. Atmospheric Pollution 1978 ( Benarie, M., ed.), Elsevier, Amsterdam, 137–42Google Scholar
  114. Seinfeld, J. H. (1975). Air Pollution: Physical and Chemical Fundamentals, McGraw-Hill, New York, chapter 4, 523 pp.Google Scholar
  115. Seinfeld, J. H., Reynolds, S. D., and Roth, P. M. (1972). Simulation of urban air pollution, Photochemical Smog and Ozone Reactions, Adv. Chem. Ser., 113, 58–100CrossRefGoogle Scholar
  116. Shannon, J. (1976). Application of the diffusion wind atmospheric dispersion model to the Tulsa urban area. Proc. 3rd Symp. Atmos. Turbulence, Diffusion Air Quality, Raleigh, N.C., 19 to 22 October 1976, Am. Meteorol. Soc., Boston, Mass., pp. 382–8Google Scholar
  117. Sheih, C. M. (1977). Mathematical modeling of particulate thermal coagulation and transport downstream of an urban source. Atmos. Environ., 11, 1185–90CrossRefGoogle Scholar
  118. Shieh, L. J., and Shir, C. C. (1976a). Development of an urban air quality simulation model with compatible RAPS data. IBM Res. Cent., Yorktown Heights, N.Y., Rep., No. RJ-1701-(24555), 147 pp.Google Scholar
  119. Shieh, L. J. (1976b). Analysis of input parameters and results of urban air pollution computation. Proc. 3rd Symp. Atmos. Turbulence, Diffusion and Air Quality, Raleigh, N.C., 19 to 22 October 1976, Am. Meteorol. Soc., Boston, Mass., pp. 374–81Google Scholar
  120. Shieh, L. J. (1974). A generalised urban air pollution model and its application to the study of sulphur dioxide distribution in the St Louis metropolitan area. J. Appl. Meteorol.,13, 185–204CrossRefGoogle Scholar
  121. Sklarew, R. C. (1973). Coupling of the photochemistry to an airshed model. Workshop on Mathematical Modelling of Photochemical Smog, US Environ. Prot. Agency, Rep., No. EPA–R4–73–010, pp. 35 – 6Google Scholar
  122. Sklarew, R. C., Fabrick, A. J., and Prager, J. E. (1972). Mathematical modelling of photochemical smog using the PIC method. J. Air Pollut. Control Assoc.,22, 865–9CrossRefGoogle Scholar
  123. Snyder, W. H. (1972). Fluid models for the study of air pollution meteorology: similarity, facilities, review of literature and recommendations. Div. Meteorol., US Environ. Prot. Agency, Publ., 106 pp.Google Scholar
  124. Snyder, W. H. (1974). Fluid modelling programme of the Meteorology Laboratory, US Environmental Protection Agency. Proc. 5th Meet. North Atlantic Treaty Organ.–Comm. Challenges Modern Soc. Expert Panel Air Pollut. Modelling, Roskilde, 4 to 6 June 1974, pp. 31–1–31–47Google Scholar
  125. Stasiuk, N. W., and Coffey, E. P. (1974). Rural and urban ozone relationship in New York state. J. Air Pollut. Control Assoc.,24, 564–8CrossRefGoogle Scholar
  126. Steinberger, H., and Balmor, Y. (1973). Photochemical ozone formation in the atmosphere over southern England. Nature (London),241, 341–2CrossRefGoogle Scholar
  127. Steinberger, H., and Goldwater, F. (1972). A sensitive automatic meter for continuous sampling of contaminating oxidants in the atmosphere. J. Phys. E,5, 373CrossRefGoogle Scholar
  128. Tauber, S. (1972). Linear algebra in air pollution problems. Atmos. Environ.,6, 279–81CrossRefGoogle Scholar
  129. Tauber, S. (1975). On the determination of pollution matrices. Atmos. Environ.,9, 135–7CrossRefGoogle Scholar
  130. Tauber, S. (1973). Matrix representation of dynamic air pollution problems. Atmos.Environ., 7, 655–66CrossRefGoogle Scholar
  131. Tauber, S., and Trau, J. (1973). A vector partial differential equation model for air pollution. Atmos. Environ., 7, 973–7CrossRefGoogle Scholar
  132. United States National Air Pollution Control Administration (1970). Air quality criteria for photochemical oxidants. US Natl Air Pollut. Control Admin., Publ., No. AP-63Google Scholar
  133. Tauber, S. (1971). Air quality criteria for nitrogen oxides. US Natl Air Pollut. Control.Admin., Publ., No. AP-84Google Scholar
  134. University of California (1974). Development of an air pollution model for the San Francisco bay area. Lawrence Livermore Lab., Univ. Calif:, Nat! Sci. Found., 2nd Semiannu. Rep., No. TTD-4500, UC-11, 127 pp.Google Scholar
  135. Varga, S. R. (1961). On higher-order stable implicit methods for solving parabolic differential equations. J. Math. Phys.,40, 220–31CrossRefGoogle Scholar
  136. Viskanta, R., Bergstrom, R. W., and Johnson, R. O. (1976). Modelling the effects of pollutants and dispersion in urban atmospheres. US Environ. Prot. Agency, Publ., No. EPA–600/4–76–002, 123 pp.Google Scholar
  137. Weatherley, M.-L. P. M. (1966). Air pollution measurements at Islington, London, in 1964, part 2. Warren Spring Lab., Stevenage, Rep., No. LR-40(1P)Google Scholar
  138. Wedding, J. B., Lombardi, D. J., and Cermak, J. E. (1977). A wind tunnel study of gaseous pollutants in city street canyons. J. Air Pollut. Control Assoc.,27, 557–66CrossRefGoogle Scholar
  139. Welch, J. E., Harlow, F. H., Shannon, J. P., and Daly, B. J. (1969). The MAC method—a computing technique for solving viscous incompressible transient fluid flow problems involving free surfaces. Los Alamos Sci. Lab., Los Alamos, N.M.,Publ., No. LA-3425, 146 pp. (revised)Google Scholar
  140. Wippermann, F., and Yordanov, D. (1972). A perspective for a routine prediction of concentration patterns. Atmos. Environ.,6, 877–88CrossRefGoogle Scholar
  141. Wisse, J. A., and Velds, C. A. (1970). Preliminary discussion on some oxidant measurements at Vlaardingen, the Netherlands. Atmos. Environ.,4, 79–85CrossRefGoogle Scholar
  142. Yoshikawa, A., Katsuhito, Y., and Hirohisa, S. (1973). Gas stagnation in rectangular cavity, part 2. Kuki Chowa Eisei Kogaku,47, 1–10(in Japanese)Google Scholar

Copyright information

© Michel M. Benarie 1980

Authors and Affiliations

  • Michel M. Benarie
    • 1
  1. 1.Institut National de Recherche Chimique AppliquéeVert-le-PetitFrance

Personalised recommendations