Critical considerations and improvements to the short-time gaussian plume models

  • Michel M. Benarie
Part of the Air Pollution Problems Series book series (AIRPP)


Chapter 3 contains a selection of the most typical short-time plume and sector models. Many papers could be cited which mainly describe the local implementation of one of these models without basically changing the inferences to be drawn from chapter 3. A fairly representative but by no means exhaustive list of papers with the application, and in some cases with the validation, of these models is as follows: Milford et al. (1971 a, b), Moriguchi (1971), Ping (1972), Yoshida et al. (1972), Legrand (1973), Matsuzaki et al. (1973), Mills and Reeves (1973), Murase et al. (1973), Nakano et al. (1973), Sadelski (1973), Shiozawa et al. (1973), Shoda et al. (1973), Kawashima et al. (1976), Gibson and Peters (1977).


Wind Speed Street Canyon North Atlantic Treaty Organ Plume Rise Carbon Monoxide Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beaton, J. L., Ranzieri, A. J., Shirley, E. C., and Skog, J. B. (1972). Mathematical approach to estimating highway impact on air quality. US Fed. Highway Admin., Air Quality Annu. IV Rep., No. FHWA-RD-72–36Google Scholar
  2. Benarie, M. (1971). Essai de prévision synoptique de la pollution par l’acidité forte dans la région rouennaise. Atmos. Environ.,5, 313–26 (in French)CrossRefGoogle Scholar
  3. Benarie, M. (1974). The effect of the sample variance on the field evaluation of air pollution monitoring instruments. Atmos. Environ., 8, 1203–4CrossRefGoogle Scholar
  4. Benarie, M. (1977). Rapid evaluation of the pollution potential of urban sites. Proc. 4th Int.Clean Air Congr., Tokyo, 16 to 20 May 1977, pp. 326–8Google Scholar
  5. Bouman, D. J., and Schmidt, F. H. (1961). On the growth of ground concentrations of atmospheric pollution in cities during stable atmospheric conditions. Beitr. Phys. Atmos., 33, 215–24Google Scholar
  6. Bowne, N. E. (1969). A simulation model for air pollution over Connecticut. J. Air Pollut. Control Assoc.,19, 570–4CrossRefGoogle Scholar
  7. Bowne, N. E. (1971). Space and time variability of sulphur dioxide and particulate con-centrations in Connecticut. Travelers Res. Cent. Corp. of New England, Hartford, Conn., Rep., 63 pp. (Contract, No. CPA-70–155)Google Scholar
  8. Brier, G. W. (1973). Validity of the air quality display model calibration procedure. US Environ. Prot. Agency, Rep., No. EPA–R4–73–017, 28 pp.Google Scholar
  9. Briggs, G. A. (1969). Plume rise, Div. Tech. Inf, US At. Energy Comm., Oak Ridge, Tenn., Publ., 81 pp.CrossRefGoogle Scholar
  10. Carson, J. E., and Moses, H. (1967). The validity of current popular plume rise formulae. Proc. US At. Energy Comm. Meteorol. Inf. Meet., Chalk River Nucl. Lab., 11 to 14 September 1967, Paper, No. AECL-2787, pp. 1–20Google Scholar
  11. Chock, D. P. (1977). General Motors sulphate dispersion experiment: assessment of the EPA HIWAY model. J. Air Pollut. Control Assoc.,17, 39–45CrossRefGoogle Scholar
  12. Clarke, J. F. (1964). A simple diffusion model for calculating point concentrations from multiple sources. J. Air Pollut. Control Assoc.,14, 347–52CrossRefGoogle Scholar
  13. Cramer, H. E., and Dumbauld, R. K. (1968). Experimental design for dosage predictions in CB field tests. GCA Corp., Bedford, Mass., Rep. No. 68–17-GGoogle Scholar
  14. Croke, E. J. (1969). Chicago air pollution system model. Argonne Natl Lab., 2nd Q.Prog. Rep. No. ANL/ES-CC-004Google Scholar
  15. Croke, E. J., et al. (24 contributors) (1971). Chicago air pollution systems analysis programme. Argonne Natl Lab., Final Rep. No. ANL/ES-CC-009 Meteorol., 393 pp.Google Scholar
  16. Dabberdt, W. F., Ludwig, F. L., and Johnson, W. B. (1973). Validation and application of an urban diffusion model for vehicular pollutants. Atmos. Environ.,7, 603–18CrossRefGoogle Scholar
  17. Dabberdt, W. F., Sandys, R. C., and Buder, P. A. (1975). ISMAP—a traffic emission—dispersion model for indirect sources. Proc. 68th Annu. Meet. Air Pollut. Control Assoc., Boston, Mass., 15 to 20 June 1975, Paper, No. 75–44.3, 17 pp.Google Scholar
  18. Demuth, C., Berger, A., Jacquart, Y., and Legros, C. (1978). Analytical modeling of pollutant dispersion during calm wind situations. Atmospheric Pollution 1978 (ed. M. Benarie), Elsevier, Amsterdam, pp. 167–73Google Scholar
  19. Deuber, A. J. (1976). Atmospheric diffusion model for short distances and complicated topography. Atmospheric Pollution (ed. M. Benarie), Elsevier, Amsterdam, pp. 135–45Google Scholar
  20. Deuber, A. J. (1977). Proc. 4th Int. Clean Air Congr., Tokyo, 16 to 20 May 1977 pp.224–6Google Scholar
  21. Fortak, H. (1961). Konzentrationsverteilung um eine kontinuierliche Punktquelle bei Windstille. VDI-Forschungsh.,483, 20–2 (in German)Google Scholar
  22. Fortak, H. (1974). Potential applications of mathematical diffusion models to the solution ofproblems of air quality maintenance. Proc. 5th Meet. North Atlantic Treaty Organ.–Comm. Challenges Modern Soc. Expert Panel Air Pollut. Modelling, Roskilde, 4 to 6 June 1974, pp. 7–1–7–109Google Scholar
  23. Frenkiel, F. N. (1956). Atmospheric pollution of growing communities. Smithsonian Inst., Annu. Rep., pp. 269–99Google Scholar
  24. Gibbson, L. V., and Peters, L. K. (1977). A short-time air quality model for sulphur dioxide in Louisville, Kentucky. J. Air Pollut. Control Assoc., 27, 218–23CrossRefGoogle Scholar
  25. Gifford, F. A. (1973). The simple ATDL urban air pollution model. Proc. 4th Meet. North Atlantic Treaty Organ. - Comm. Challenges Modern Soc. Expert Panel Air Pollut. Modelling, 28 to 30 May 1973, Oberursel, pp. XVI-1-XVI-18Google Scholar
  26. Hamburg, F. C. (1971). Urban model improvement by input of representative nonzero-stack-height winds. Proc. 64th Annu. Meet. Air Pollut. Control Assoc., Atlantic City, N.Y., 27 June to 1 July 1971Google Scholar
  27. Hanna, S. R. (1971). A simple method of calculating dispersion from urban area sources. J. Air Pollut. Control Assoc.,21, 774–7CrossRefGoogle Scholar
  28. Hilst, G. R. (1970). Sensitivities of air quality prediction to input errors and uncertainities. Proc. Symp. Multiple–source Urban Diffusion Models (ed. A. Stern), US Environ. Prot. Agency, Publ., No. A–99, p. 7–1 (in reference erroneously located as pp. 8–1–8–40; title interchanged with 7th Conf.)Google Scholar
  29. Hilst, G. R., Yocom, J. E., Bowne, N. E. and Badgley, F. I. (1967). The TRC regional air pollution model. Travelers Res. Cent. Corp. of New England, Hartford, Conn., Final Rep., No. RSA-65–4, 66 pp.Google Scholar
  30. Holzworth, G. (1972). Mixing heights, wind speeds and potential for urban air pollution throughout the contiguous United States. US Environ. Prot. Agency, Publ., No. AP-101, 118 pp.Google Scholar
  31. Hotchkiss, R. S. and Harlow, F. H. (1973). Air pollution transport in street canyons. US Environ. Prot. Agency, Rep., No. EPA–R4–73–029, 113 pp.Google Scholar
  32. Johnson, W. B., Dabberdt, W. F., Ludwig, F. L., and Allen, R. J. (1971). Field study for initial evaluation of an urban diffusion model for carbon monoxide. Stanford Res. Inst., Rep., 144 pp. ( Project, No. 8563 )Google Scholar
  33. Johnson, W. B., Ludwig, F. L., Dabberdt, W. F., and Allen, R. J. (1973). An urban diffusion simulation model. J. Air Pollut. Control Assoc.,23, 490–8CrossRefGoogle Scholar
  34. Kawashima, E., et al. (1976). Prediction of the distribution of ground-level concentration of air pollutant with plume dispersion model. J. Jpn. Soc. Air Pollut., 11 (in Japanese)Google Scholar
  35. Koch, R. C., and Thayer, S. D. (1971). Validation and sensitivity analysis of the gaussian multiple-source urban diffusion model. Geomet Inc., Rockville, Md, Publ., No. APDT-0935, 181 pp. + appendixes (Natl Tech. Inf. Serv., No. NTIS-PB206951)Google Scholar
  36. Lamb, D. V., Badgley, F. I., and Rossano, A. T., Jr. (1973). A critical review of mathematical modelling techniques for air quality with relation to motor vehicle transportation. Washington State Highway Dep., Res. Rep., No. 12.1, 89 pp. (Univ. Washington, Res. Project, No. Y-1540)Google Scholar
  37. Lamb, R. G. (1968). An air pollution model for Los Angeles. Univ. Calif, Los Angeles, Calif., M.S. ThesisGoogle Scholar
  38. Lee, R. C. K. (1964). Optimal Estimation, Identification and Control, Mass. Inst. Technol. Press, Cambridge, Mass.Google Scholar
  39. Legrand, M. (1973). Climatology model of sulphur-oxide-generated air pollution. Proc. 3rd Int. Clean Air Congr., Düsseldorf, 8 to 12 October 1973, VDI-Verlag, Düsseldorf, pp. B27–B30 (in French)Google Scholar
  40. Ludwig, F. L., and Dabberdt, W. F. (1972). Evaluation of the APRAC-1A urban diffusion model for carbon monoxide. Stanford Res Inst., Publ., 115 pp. (Project, No. 8563, Contract, No. CAPA-3–68 (1–69)) (Natl Tech. Inf. Serv., No. NTIS-PB210819)Google Scholar
  41. Ludwig, F. L., Gasiorek, L. S., and Ruff, R. E. (1977). Simplification of a gaussian puff model for rejal-time minicomputer use. A tmos. Environ., 11, 431–6CrossRefGoogle Scholar
  42. Ludwig, F. L., Johnson, W. B., Moon, A. E., and Mancuso, R. (1970). A practical multi–purpose urban diffusion model for carbon monoxide. Stanford Res. Inst., Rep. 184 pp. (Contract, Nos CAPA–3–68 and CPA–2269–64); Proc. Symp. Multiple–source Urban Diffusion Models, Chapel Hill, N.C., 28 to 30 October 1969 pp. 5–15–38Google Scholar
  43. Mahoney, J. R., Maddaus, W. O., and Goodrich, J. C. (1970). Analysis of multiple–station urban air sampling data. US Environ. Prot. Agency, Publ., No. AP–86, pp. 11–1–11–22Google Scholar
  44. Maldonado, C., and Bullin, J. A. (1977). Modeling carbon monoxide dispersion from roadways. Environ. Sci. Technol., 11, 1071–6CrossRefGoogle Scholar
  45. Mancuso, R. L., and Ludwig, F. L. (1972). User’s manual for the APRAC-1A diffusion model computing programme. Stanford Res. Inst., Publ. (Coordin. Res. Council–US Environ. Prot. Agency, Contract, No. CAPA-368 (1–69))Google Scholar
  46. Matsuzaki, T., Ohkohchi, M., and Udo, M. (1973). Air pollution diffusion simulation on computer graphics for urban system development—validation and sensitivity analysis in Himeji City. Proc. Jpn. 51st Meet. Soc. Mech. Eng., Fukuoka, 16 to 17 October 1973, Paper, No. 617Google Scholar
  47. Milford, S. N., McCoyd, G. C., Aronowitz, L., and Scanlon, J. H. (1971a). Comparison of air pollution models with aerometric data for the air quality region centred on New York city. Proc. 2nd Int. Clean Air Congr., Washington, D.C., 6 to 11 December 1970 (eds H. M. Englund and W. T. Beery), Academic Press, New York, pp. 1168–76CrossRefGoogle Scholar
  48. Milford, S. N. (1971b). Developing a practical dispersion model for air quality region. J. Air Pollut. Control Assoc., 21, 549–54CrossRefGoogle Scholar
  49. Mills, M. T., and Reeves, M. (1973). A multi-source atmospheric transport model for deposition of trace contaminants. Oak Ridge Natl Lab., Publ. (Tenn. Natl Sci. Found. Interagency Agreement, No. AG389)Google Scholar
  50. Moriguchi, M. (1970). Evaluation of urban air pollution models. J. Pollut. Control Jpn, 7, 213–20 (in Japanese)Google Scholar
  51. Moses, H., and Bogner, M. A. (1967). Fifteen-year climatological summary, 1 January 1950 to 31 December 1964. Argonne Natl Lab., Publ., No. ANL-7084Google Scholar
  52. Murase, A., Terabe, M., Koboyashi, J., and Iwasaki, T. (1973). A calculating technique limiting sulphur oxide emission density. Proc. 14th Annu. Meet. Jpn. Soc. Air Pollut., Fukushima, 6 to 8 November 1973, Paper, No. 41 (in Japanese)Google Scholar
  53. Nakamura, K., and Tanaka, Y. (1974). Simulation for calculation of carbon monoxide concentration around street. J. Jpn. Soc. Air Pollut.,9, 492 (in Japanese)Google Scholar
  54. Nakano, M., Nakano, T., Sato, N., and Masuda, T. (1973). Atmospheric diffusion computation in Osaka City, report 3. J. Jpn. Soc. Air Pollut.,8, 445 (in Japanese)Google Scholar
  55. Nester, K. (1967). Distribution des concentrations autour d’une source ponctuelle continue par vent nul. Bull. Tech. Suisse Romande,93, 347–50 (in French)Google Scholar
  56. Nickola, P. W., and Ludwig, J. D. (1972). Preliminary concentration measurements of puffs released during near calm winds. Pacific Northwest Lab., US At. Energy Comm., Annu. Rep., No. UC-53, vol.II, part 1, pp. 119–21Google Scholar
  57. Ott, W., Clarke, J. F., and Ozolins, G. (1967). Calculating future carbon monoxide emissions and concentrations from urban traffic data. Dep. Health, Educ. Welfare, US Natl Air Pollut. Control Admin., Publ., No. 999-AP-41, 40 pp.Google Scholar
  58. Pasquill, F. (1974). Atmospheric Diffusion, Wiley, New York, 429 pp.Google Scholar
  59. Peters, L. K., and Richards, L. W. (1977). Extension of atmospheric dispersion models to incorporate fast reversible reactions. Atmos. Environ., 11, 101–8CrossRefGoogle Scholar
  60. Peterson, T. W., and Seinfeld, J. H. (1977). Mathematical model for transport, interconversion and removal of gaseous and particulate pollutants—applications to the urban plume. Atmos. Environ., 11, 1171–84CrossRefGoogle Scholar
  61. Pickard, L. (1972). Atmospheric diffusion experiments with SF6 tracer gas at Three Mile Island Nuclear Station under low wind speed inversion conditions. Res. Corp. of New England and Gen. Public Utilities S.’rv. Corp., Publ., 135 pp. (Nat! Tech. Inf. Serv., No. NTIS-DKT-50289–50)Google Scholar
  62. Ping, C. (1972). A scheme for allocation of emission in urban areas. Northwestern Univ., Evanston, Ill., Thesis, 193 pp.Google Scholar
  63. Polster, G. (1973). Analyse austauscharmer Wetterlagen und Smoglagen. Proc. 3rd Int. Clean Air Congr., Düsseldorf, 8 to 12 October 1973, VDI-Verlag, Düsseldorf, pp. 875–8 (in German)Google Scholar
  64. Roberts, J. J., Croke, E. J., and Kennedy, A. S. (1970a). An urban atmospheric dispersion model. Proc. Symp. Multiple–source Urban Diffusion Models (ed. A. Stern), US Environ. Prot. Agency, Publ., No. AP–86, pp. 6–1–6–72Google Scholar
  65. Roberts, J. J., Croke, E. J., Kennedy, A. S., Norco, J. E., and Conley, L. A. (1970b). A multiple-source urban atmospheric dispersion model. Argonne Natl Lab., Rep., No. ES-CC-007Google Scholar
  66. Rose, A. H., Smith, R., McMichael, W. F., and Kouse, R. E. (1964). Comparison of auto exhaust emissions from two major cities. J. Air Pollut. Control Assoc.,15, 362–6CrossRefGoogle Scholar
  67. Rosenblum, H. S., Egan, B. A., Ingresoll, C. S., and Keefe, M. J. (1975). Adaptation of gaussian plume model to incorporate multiple-station data. Environ. Res. Technol. Inc., Doc., No. P-1121, 58 pp.Google Scholar
  68. Rote, D. M., Gudenas, J. W., and Conley, L. A. (1971). Studies of the Argonne integrated-puff model. Argonne Natl Lab., Rep., No. ES-9, 106 pp.Google Scholar
  69. Sadelski, M. (1973). Study of correlation between calculated and measured sulphur dioxide dispersion in highly industrialised areas. Proc. 3rd Int. Clean Air Congr., Düsseldorf 8 to 12 October 1973, VDI-Verlag, Düsseldorf, p. B31 (in German)Google Scholar
  70. Sagendorf, J. F., and Dickson, C. R. (1974). Diffusion-model low-wind-speed inversion conditions. Air Resources Lab., Idaho Falls, Idaho, US Natl Oceanic Atmos. Admin., Tech. Memo., No. ERL-ARL-52Google Scholar
  71. Sagendorf, J. F. (1976). Diffusion under low windspeed, inversion conditions. Proc. 3rd Symp.Atmos. Turbulence, Diffusion Air Quality, Raleigh, N.C., 19 to 22 October 1976, Am. Meteorol. Soc., Boston, Mass., pp. 277–82Google Scholar
  72. Sheih, C. M., and Moroz, W. J. (1973). A Lagrangian puff diffusion model for the prediction of pollutant concentrations over urban areas. Proc. 3rd Int. Clean Air Congr., Düsseldorf 8 to 12 October, VDI-Verlag, Düsseldorf, pp. B43 - B52Google Scholar
  73. Shieh, L. J., and Halpern, P. K. (1971). Numerical comparison of various model representations for a continuous-area source. IBM Sci. Cent., Palo Alto, Calif., Publ., No. G-320–3239, 33 pp.Google Scholar
  74. Shiozawa, K., and Okamoto, S. (1977). A modified plume model applicable to the unsteady weather condition. Proc. 4th Int. Clean Air Congr., Tokyo, 16 to 20 May 1977, p. 288–91Google Scholar
  75. Shiozawa, K., Okamoto, S., and Ootaki, A. (1975). A diffusion model for air quality simulation. Proc. 68th Annu. Meet. Air Pollut. Control Assoc., Boston, Mass., 15 to 20 June 1975, Paper, No. 75–04.4, p. 8Google Scholar
  76. Shiozawa, K., Otaki, A., Okamoto, S., Yamane, J., and Hiroo, J. (1973). Studies on the prediction of air pollutant concentration, VII, simulation of urban air pollution by diffusion models. Proc. 14th Annu. Meet. Jpn. Soc. Air Pollut., Fukushima, 6 to 8 November 1973 (in Japanese)Google Scholar
  77. Shoda, T., Izumi, Y., Oshida, H., Nakayima, Y., and Yamahara, S. (1973). A consideration on the control for quality of air pollutants. Proc. 14th Annu. Meet. Jpn. Soc. Air Pollut., Fukushima, 6 to 8 November 1973, Paper, No. 43 (in Japanese)Google Scholar
  78. Sklarew, R. S., Turner, D. B., and Zimmerman, J. R. (1972). Modelling air pollution near highways. Proc. Conf: VDI-Komm. Reinhaltung der Luft, DüsseldorfGoogle Scholar
  79. Stukel, J. J., Solomon, R. L., and Hudson, J. L. (1975). A model for the dispersion of particulate or gaseous pollutants from a network of streets and highways. Atmos. Environ., 9, 990–9CrossRefGoogle Scholar
  80. Sutton, W. G. L., (1953). Micrometeorology, McGraw-Hill, New York, 333 pp.Google Scholar
  81. Thayer, S. D., and Koch, R. C. (1972). Sensitivity analysis of the multiple-source gaussian plume urban diffusion model. Proc. Conf. Urban Environ. and 2nd Conf. Biometeorol., Philadelphia, Pa, 31 October to 2 November 1972, Am. Meteorol. Soc., Boston, Mass., pp. 69–76Google Scholar
  82. Turner, D. B. (1964). A diffusion model for an urban area. J. Appl. Meteorol.3, 83–91.CrossRefGoogle Scholar
  83. Turner, D. B. (1970). Workbook of atmospheric dispersion estimates. US Environ. Prot. Agency, Publ. No. AP-26, 82 pp.Google Scholar
  84. Turner, D. B. (1971). Personal communication to D. M. Rote et al.Google Scholar
  85. Ueguchi, N., Okamoto, H., and Ude, Y. (1973). Predictions of calm-inversion pollution. Proc. 3rd Int. Clean Air Congr., Düsseldorf 6 to 10 October, VDI-Verlag, Düsseldorf, pp. B66 — B68Google Scholar
  86. Wilson, R. B., Start, G. E., Dickson, C. R., and Ricks, N. R. (1976). Diffusion under low wind speed conditions near Oak Ridge, Tennessee. Proc. 3rd Symp. Atmos. Turbulence, Diffusion Air Quality, Raleigh, N. C., 19 to 22 October 1976, Am. Meteorol. Soc., Boston, Mass., pp. 269–76Google Scholar
  87. Yamartino, R. J. (1976). An air quality dispersion model applicable to calm conditions. Proc. 7th Int. Tech. Meet. Air Pollut. Modelling and its Appl., Airlie, Va, 7 to 10 September 1976, 17 pp.Google Scholar
  88. Yoshida, K., Murata, M., Tsujikawa, T., Kitabatake, M., and Tamura, H. (1972). Atmospheric dispersion calculation in Yokkaichi area. Proc. 13th Annu. Meet. Jpn. Soc. Air Pollut., 7 to 9 November 1972, Paper, No. 239 (in Japanese)Google Scholar
  89. Zimmermann, J. R., and Thompson, R. S. (1975). User’s guide for HIWAY—a highway air pollution model. US Environ. Prot. Agency, Publ., No. EPA-650/4–74008, 58 pp., with 2 addenda (July 1975 )Google Scholar

Copyright information

© Michel M. Benarie 1980

Authors and Affiliations

  • Michel M. Benarie
    • 1
  1. 1.Institut National de Recherche Chimique AppliquéeVert-le-PetitFrance

Personalised recommendations