Advertisement

Multi-source gaussian plume concepts for short-time computations

  • Michel M. Benarie
Part of the Air Pollution Problems Series book series (AIRPP)

Abstract

In this chapter we shall discuss in general the current methods which, under the rather vague heading gaussian plume concept, are used for the computation of concentration fields resulting from large numbers of distributed urban and industrial sources.

Keywords

Wind Speed Area Source Sulphur Dioxide Diffusion Parameter Skill Score 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adachi, T., and Ohta, S. (1977). Practical use of Berlyand theory on the atmospheric diffusion. Proc. 4th Int. Clean Air Congr., Tokyo, 16 to 20 May 1977, pp. 230–2Google Scholar
  2. Anderson, G. E., Hippler, R. R., and Robinson, G. D. (1969). An evaluation of dispersion formulae. Travelers Res. Cent. Corp. of New England, Hartford, Conn., Doc., No. 2005–370Google Scholar
  3. Bass, A., and Orszag, S. A. (1976). Spectral modelling of atmospheric flows and turbulent diffusion. US Environ. Prot. Agency, Publ., No. EPA–600/4–76–007, 139 pp.Google Scholar
  4. Berlyand, M. E. (1972a). Investigation of atmospheric diffusion providing a me-teorological basis for air pollution control. Atmos. Environ., 6, 379–88CrossRefGoogle Scholar
  5. Berlyand, M. E. (1972b). Atmospheric diffusion investigations in the USSR. World Meteorol.Organ., Tech. Note, No. 121Google Scholar
  6. Berlyand, M. E., Genikovich, E. L., and Dem’yanovich, V. K. (1965). Some typical aspects of research on atmospheric diffusion. Tr. Gl. Geofiz. Obs. No. 172 (in Russian)Google Scholar
  7. Berlyand, M. E., Genikovich, E. L., Lozkhina, V. P., and Onikul, R. A. (1963). Numerical solution of turbulent diffusion equation and air pollution calculation near industrial plants. Tr. Gl. Geofiz. Obs., No. 138 (in Russian)Google Scholar
  8. Berlyand, M. E. (1964). Numerical research on atmospheric diffusion under normal and anomalous stratification conditions. Tr. Gl. Geofiz. Obs., No. 158 (in Russian)Google Scholar
  9. Berlyand, M. E., and Onikul, R. I. (1973). Generalisation of the theory of the dispersion of industrial discharges in the atmosphere. Air Pollution and Atmospheric Diffusion (ed. M. E. Berlyand), Halsted Press, New York, Isr. Programme Sci. Transl., JerusalemGoogle Scholar
  10. Blanchet, J., Pacarre, P., Mique, M., and du Vachat, R. (1973). Turbulent diffusion of passive pollutant in the atmosphere. Météorologie, 27, 37–57 (in French)Google Scholar
  11. Bowne, N. E. (1969). A simulation model for air pollution over Connecticut. J. Air Pollut. Control Assoc.,19, 570–4CrossRefGoogle Scholar
  12. Bowne, N. E. (1971). Space and time variability of sulphur dioxide and particulate con-centrations in Connecticut. Travelers Res. Cent. Corp. of New England, Hartford, Conn., Rep., 63 pp. ( Contract, No. CPA 70–155 )Google Scholar
  13. Bowne, N. E. (1974). Diffusion rates. J. Air Pollut. Control Assoc., 24, 832–5CrossRefGoogle Scholar
  14. Bowne, N. E., Boyer, A. E., Trent, K. E., and Cooper, D. G. (1971). An air quality model for metropolitan Toronto. Proc. 64th Annu. Meet. Air Pollut. Control Assoc., Atlantic City, N.Y., Paper, No. 71–94, 20 pp.; Proc. 5th Annu. Congr. Can. Meteorol. Soc., Quebec, 12 May 1971, Can. Meteorol. Soc., St Anne de Bellevue, 22 pp.Google Scholar
  15. Bowne, N. E., and Robinson, D. E. (1971). A regional air quality simulation model. Travelers Res. Cent. Corp. of New England, Hartford, Conn., Rep., 35 pp. ( Contract, No. CPA 70–155 )Google Scholar
  16. Boyer, A. E., and Heidorn, K. C. (1974). Urban planning utilising a regional atmospheric simulation model. Proc. 5th Meet. North Atlantic Treaty Organ.–Comm. Challenges Modern Soc. Expert Panel Air Pollut. Modelling, Roskilde, 4 to 6 June 1974, pp. 21–1–21–17Google Scholar
  17. Briggs, G. A. (1969). Plume rise. Div. Tech. Inf, US At. Energy Comm., Oak Ridge, Tenn., Publ., 81 pp.Google Scholar
  18. Bringfelt, B. (1975). The state of air pollution modelling and model applications in Sweden. Proc. 6th North Atlantic Treaty Organ.–Comm. Challenges Modern Soc. Int. Tech. Meet. Air Pollut. Modelling, Frankfurt, 24 to 26 September 1975, pp. 171–83Google Scholar
  19. Bringfelt, B., Hjorth, T., and Ring, S. (1974). A numerical air pollution dispersion model for central Sweden. Atmos. Environ., 8, 131–48CrossRefGoogle Scholar
  20. Burt, E. W. (1977). Valley model user’s guide. US Environ. Prot. Agency, Publ., No. EPA–450/2–77–018, 112 ppGoogle Scholar
  21. Calder, K. L. (1969). Unpublished personal communication to F. GiffordGoogle Scholar
  22. Calder, K. L. (1974). Miscellaneous questions relating to the use of air quality simulation models. Proc. 5th Meet. North Atlantic Treaty Organ.–Comm. Challenges Modern Soc. Expert Panel Air Pollut. Modelling, Roskilde, 4 to 6 June 1974, pp. 6–1–6–21Google Scholar
  23. Calder, K. L. (1977). Multiple-source plume models of urban air pollution—their general structure. Atmos. Environ., 1, 403–14CrossRefGoogle Scholar
  24. Christiansen, O., and Prahm, L. P. (1976). A pseudospectral model for dispersion of atmospheric pollutants. Dan. Meteorol. Inst., Rep.; submitted to J. Appl. Meteorol.Google Scholar
  25. Clarke, J. F. (1964). A simple diffusion model for calculating point concentrations from multiple sources. J. Air Pollut. Control Assoc., 14, 347–52CrossRefGoogle Scholar
  26. CONCAWE (1966). The calculation of atmospheric dispersion from a stack. CONCAWE, The Hague, Publ., 57 ppGoogle Scholar
  27. Crane, G., Panofsky, H. A., and Zeman, O. (1977). A model for dispersion from area sources in convective turbulence. Atmos. Environ., 11, 893–900CrossRefGoogle Scholar
  28. Deuber, A. J. (1976). Atmospheric diffusion model for short distances and complicated topography. Atmospheric Pollution (ed. M. Benarie), Elsevier, Amsterdam, pp. 135–45Google Scholar
  29. Deuber, A. J.(1977). Proc. 4th Int. Clean Air Congr., Tokyo, 16 to 20 May 1977 pp. 224–6Google Scholar
  30. Donaldson, Coleman du P. (1969). A computer study of an analytical model of boundary layer transition. Aircraft Ind. Assoc. Am. J., 7, 271–8Google Scholar
  31. Deuber, A. J. (1971). Calculation of turbulent shear flows for atmospheric and vortex motions. Aircraft Ind. Assoc. Am. J., 10, 4–12Google Scholar
  32. Deuber, A. J.(1973). Atmospheric turbulence and the dispersal of atmospheric pollutants. US Environ. Prot. Agency, Rep. No. EPA–R4–73–016b, 50 pp.Google Scholar
  33. Donaldson, Coleman du P., and Hilst, G. R. (1971). An initial test of applicability of invariant modelling method to atmospheric boundary layer diffusion. Aeronaut. Res. Assoc. Princeton Inc., Rep., No. 169, 52 pp. (US Environ. Prot. Agency, Contract, No. 68–02–0014)Google Scholar
  34. Donaldson, Coleman du P., Sullivan, R. D., and Rosenbaum, H. (1970). Theoretical study of the generation of atmospheric clear turbulence. Aircraft Ind. Assoc. Am. J.,10, 162–70Google Scholar
  35. Ermak, D. L. (1977). An analytical model for air pollutant transport and deposition from a point source. Atmos. Environ.,11, 231–7CrossRefGoogle Scholar
  36. Forsdyke, A. G. (1970). Meteorological factors in air pollution. World Meteorol. Organ., Tech. Note, No.114, 32 ppGoogle Scholar
  37. Gifford, F. A. (1961a). The problems of forecasting dispersion in the lower atmosphere. Weather Bur. Res. Stn, Oak Ridge, Tenn., Publ.Google Scholar
  38. Gifford, F. A. (1961b). Uses of routine meteorological observations. Nucl. Sal,2, 47–51Google Scholar
  39. Gifford, F. A. (1974). Discussion of the sensitivity of the gaussian plume model. Atmos.Environ.,8, 870–1CrossRefGoogle Scholar
  40. Gifford, F. A., and Hanna, S. R. (1970). Urban air pollution modelling. Proc. 2nd Int. Clean Air Congr., Washington, D.C., 6 to 11 December 1970 (eds H. M. Englund and W. T. Beery ), Academic Press, New York, 1971, pp. 1146–51Google Scholar
  41. Gringorten, I. I. (1955). Test of significance in a verification programme. J. Meteorol.,12, 179–85CrossRefGoogle Scholar
  42. Guldberg, P. H., Myers, J. P., Wiltsee, K. W. and Morgenstern, P. (1977). Handbook for the single source (CRSTER) model. Walden Div., Abcor Inc., Wilmington, Mass., Publ. No. MA 01887, 206 ppGoogle Scholar
  43. Guzewich, D. C., and Pringle, W. J. B. (1977). Validation of the EPA PTMTP short-time gaussian dispersion model. J. Air Pollut. Control Assoc.,27, 540–2Google Scholar
  44. Hammerle, J. R. (1976). Emission inventory. Air Pollution, vol. III (ed. A. C. Stern), Academic Press, New York, 718–84Google Scholar
  45. Hilsheimer, W. F., and Gifford, F. A. (1962). Graphs for estimating atmospheric dispersion. Oak Ridge Natl Lab., Div. Health Sal, US At. Energy Comm., Oak Ridge, Tenn., Rep., No. ORO-545Google Scholar
  46. Hilst, G. R., Donaldson, Coleman du P., Teske, M., Contiliano, R., and Freiberg, J. (1973). The development and preliminary application of an invariant coupled diffusion chemistry model. Aeronaut. Res. Assoc. Princeton Inc., Publ. (US Natl Aeronaut. Space Admin. Contract, No. NASI–1143), 84 pp.; A coupled two–dimensional diffusion and chemistry model for turbulent and inhomogeneous mixed reaction systems. Aeronaut. Res. Assoc. Princeton Inc., US Environ. Prot. Agency, Rep., No. EPA–R4–73–016c, 93 pp (US Environ. Prot. Agency, Contract, No. 68–02–0014)Google Scholar
  47. Hinze, J. O. (1959). Turbulence, McGraw-Hill, New York, 586 ppGoogle Scholar
  48. Holland, J. Z. (1953). A meteorological survey of the Oak Ridge area. Oak Ridge Nat! Lab., US At. Energy Comm., Rep., No. ORO-99, pp. 554–9Google Scholar
  49. Holzworth, G. (1972). Mixing heights, wind speeds and potential for urban air pollution throughout the contiguous United States. US Environ. Prot. Agency, Publ., No. AP-101, 118 ppGoogle Scholar
  50. Hrenko, J. M., and Turner, D. B. (1975). An efficient gaussian plume multiple-source air quality algorithm. J. Air Pollut. Control Assoc.,26, 570–5Google Scholar
  51. Hrenko, J. M. (1976). Proc. 68th Annu. Meet. Air Pollut. Control Assoc., Boston, Mass., 15 to 20 June 1976, Paper, No. 75–043, 11 ppGoogle Scholar
  52. Ingram, W., Kaiser, E., and Simon, C. (1965). Source emission inventory for sulphur dioxide in the New York metropolitan area. Dep. Civ. Eng., New York Univ., Rep.Google Scholar
  53. Khanna, S. B. (1976). Handbook for UNAMAP, Walden Div., Abcor Inc., Wilmington, Mass., Publ., 108 pp. (Natl Tech. Inf. Serv., No. UNAMAP-NTISPB-229771 (tape)) (reprinted 1977 )Google Scholar
  54. Koch, R. C., and Thayer, S. D. (1971). Validation and sensitivity analysis of the gaussian multiple-source urban diffusion model. Geomet Inc., Rockville, Md, Publ., No. APDT-0935, 181 pp. + appendixes (Natl Tech. Inf. Serv., No. NTIS-PB206951)Google Scholar
  55. Koch, R. C. (1972). Validity of the multiple-source gaussian plume urban diffusion model using hourly estimates of input. Proc. Conf. Urban Environ. and 2nd Conf. Biometeorol., Philadelphia, Pa, 31 October to 2 November 1972, Am. Meteorol. Soc., Boston, Mass., pp. 64–8Google Scholar
  56. Koogler, J. B., Sholtes, R. S., Davis, A. L., and Harding, C. I. (1967). A multi-variable model for atmospheric dispersion predictions. J. Air Pollut. Control Assoc.,17, 211–14CrossRefGoogle Scholar
  57. Lewellen, W. S., and Teske, M. (1975). Turbulence modelling and its application to atmospheric diffusion, part I. US Environ. Prot. Agency, Publ., No. EPA-600/4–75016a, 50 ppGoogle Scholar
  58. Lowry, P. H. (1951). Microclimate factors in smoke pollution from tall stacks. Am. Meteorol. Soc. Meteorol. Monographs, No.1, p. 24Google Scholar
  59. Lucas, D. H. (1958). The atmospheric pollution of cities. Int. J. Air Pollut.,1, 71–81Google Scholar
  60. Lukey, M. E., and Allison, J. K. (1975). APAMAX—a computer programme designed to estimate short-term concentrations of air contaminants. Proc. 68th Annu. Meet. Air Pollut. Control Assoc., Boston, Mass., 15 to 20 June 1975, Paper, No. 75–26. 8, 17 pp.Google Scholar
  61. Luna, R. E., and Church, H. W. (1972). A comparison of turbulence intensity and stability ratio measurements to Pasquill stability classes. J. App!. Meteorol.,11, 663–9CrossRefGoogle Scholar
  62. McElroy, J. L., and Pooler, J. (1968). St Louis dispersion study, vol. II, analysis. US Natl Air Pollut. Control Admin., Publ., No. AP-53, 51 pp. (Natl Tech. Inf. Serv., No. NTIS-PB-190255)Google Scholar
  63. Mailath, F. P., and Morik, J. (1974). Some conclusions on surveys of sulphation rate and sulphur dioxide measurements of the air in residential areas. Egészségtudommàny,18, 303–7 (in Hungarian)Google Scholar
  64. Maul, P. R. (1977). The mathematical modelling of the meso-scale transport of gaseous pollutants. Atmos. Environ., 11, 1191–5CrossRefGoogle Scholar
  65. Miller, M. E., and Holzworth, G. C. (1967). An atmospheric diffusion model for metropolitan areas. J. Air Pollut. Control Assoc.,17, 46–50CrossRefGoogle Scholar
  66. Moses, H., and Kraimer, R. M. (1972). Plume rise determination—a new technique without equations. J. Air Pollut. Control Assoc.,22, 621–30CrossRefGoogle Scholar
  67. Nester, K. (1976). Abschätzung des Einflusses der Rauhigkeit für verschiedene Stabilitätszustände der Atmosphäre. Staub,36, 371–5 (in German)Google Scholar
  68. Nester, K., Hübschmann, W. G., and Thomas, P. (1977). The influence of ground roughness on atmospheric diffusion. Proc. 4th Int. Clean Air Congr., Tokyo, 16 to 20 May 1977, pp. 153–6Google Scholar
  69. Olsson, L. E. (1975). Air pollution meteorology and ecological planning. Proc. Semin. Air Pollut. Modelling, Venice, 27 to 28 November 1975Google Scholar
  70. Ott, W., Clarke, J. F., and Ozolins, G. (1967). Calculating future carbon monoxide emissions and concentrations from urban traffic data. Dep. Health, Educ. Welfare, US Nail Air Pollut. Control Admin., Publ., No. 999-AP-41, 40 pp.Google Scholar
  71. Pasquill, F. (1961). The estimation of the dispersion of windborne material. Meteorol. Mag., 90, 33Google Scholar
  72. Pasquill, F. (1974). Atmospheric Diffusion, Wiley, New York, 429 pp.Google Scholar
  73. Pasquill, F. (1976a). Atmospheric dispersion parameters in gaussian plume modelling, part II, possible requirements for change in the Turner workbook values. US Environ. Prot. Agency, Publ., No. EPA–600/4–76–030b, 43 pp.Google Scholar
  74. Pasquill, F. (1976b). The ‘gaussian plume’ model with limited vertical mixing. US Environ.Prot. Agency, Publ., No. EPA–600/4–76–042, 12 pp.Google Scholar
  75. Pooler, D., Jr. (1960). A tracer study of dispersion over a city. J. Air Pollut. Control Assoc., 11, 677–81Google Scholar
  76. Porter, R. A. (1976). Dispersion equation solutions by calculator. Texas Air Control Board, Publ., 13 pp + appendixesGoogle Scholar
  77. Porter, R. A., and Christiansen, J. H. (1976). Two efficient gaussian plume models developed at the Texas Air Control Board. Proc. 7th North Atlantic Treaty Organ. —Comm. Challenges Modern Soc. Int. Tech. Meet. Air Pollut. Modelling, Durham,N.C., 13 to 15 September 1976Google Scholar
  78. Roberts, O. F. T. (1923). The theoretical scattering of smoke in a turbulent atmosphere, Proc. R. Soc. (London), Ser. A,104, 640–54CrossRefGoogle Scholar
  79. Science Applications Inc. (1977). Gaussian evaluation model and integrated model for plumes and atmospherics in complex terrain. Sci. App!. Inc., Westlake Village, Calif:, Publ.Google Scholar
  80. Scorer, R. (1968). Air Pollution, Pergamon, Oxford, 151 pp.Google Scholar
  81. Shenfeld, L., and Boyer, A. E. (1974). The utilisation of an urban air pollution model in air management. Proc. 5th Meet. North Atlantic Treaty Organ.—Comm. Challenges Modern Soc. Expert Panel Air Pollut. Modelling, Roskilde, 4 to 6 June 1974, pp. 22–1–22–35Google Scholar
  82. Shieh, L. J. (1969). A multiple-source model of turbulent diffusion and dispersion in urban atmospheres. Mathematical Models of Urban Air Pollution Dynamics, vol. 2, New York Univ., Final Rep., No. TR-69–11 (Res. Grant, No. AP-00328–04)Google Scholar
  83. Shieh, L. J., Davidson, B., and Friend, J. P. (1970). A model of diffusion in urban atmospheres: sulphur dioxide in greater New York. Proc. Symp. Multiple–source Urban Diffusion Models (ed. A. C. Stern), US Environ. Prot. Agency, Publ., No. AP–86, pp. 10–1–10–38Google Scholar
  84. Shieh, L. J., Halpern, P. K., Clemens, B. A., Wang, H. H., and Abraham, F. F. (1972). Air quality diffusion model, application to New York city. IBM J. Res. Dev., No.3, 162–70CrossRefGoogle Scholar
  85. Shorr, B. (1953). Ground-level concentration in the vicinity of a 185 ft stack. Gen. Elect. Co., Publ., 20 pp. (US At. Energy Comm., Contract, No. W-31–109-Eng.-52, HW-27781)Google Scholar
  86. Simon, C. (1968). Plume rise and plume concentration distribution from consolidated Edison Plant in New York city. New York Univ., Tech. Rep., No. 68–15Google Scholar
  87. Singer, I. A., and Smith, M. E. (1966). Atmospheric dispersion at the Brookhaven Laboratory. Int. J. Air Water Pollut., 10, 125–35Google Scholar
  88. Smith, G. L. (1973). Modelling of turbulent transport in the surface layer. Langley Res. Cent. Work Unit 160–44–63–04, Rep., No. L —8917; US Natl Aeronaut. Space Admin., Tech. Note, No. TN D–7306, 34 pp.Google Scholar
  89. Smith, G. L. (1976). Pollutant dispersal in a non-uniform flow. Proc. 3rd Symp. Atmos.Turbulence, Diffusion Air Quality, Raleigh, N.C., 19 to 22 October 1976, Am. Meteorol. Soc., Boston, Mass., pp. 206–12Google Scholar
  90. Smith, M. E., and Singer,. A. (1966). An improved model of estimating concentrations and related phenomena from a point-source emission. J. Appl. Meteorol.,5, 631–9CrossRefGoogle Scholar
  91. Smith, M. E. (1971). Application of a multi-source model to an urban study. Proc. 2nd Int.Clean Air Congr., Washington, D.C., 6 to 11 December 1970 (eds H. M. Englund and W. T. Beery), Academic Press, New York, pp. 1143–6CrossRefGoogle Scholar
  92. Stephens, N. T., and McCaldin, R. O. (1971). Attenuation of power station plumes as determined by instrumented aircraft. Environ. Sci. Technol.,5, 615–21CrossRefGoogle Scholar
  93. Stumke, H. (1963). Suggestions for an empirical formula for chimney elevation. Staub, 23, 549 (in German)Google Scholar
  94. Sutton, O. G. (1953). Micrometeorology, McGraw-Hill, New York, 333 pp.Google Scholar
  95. Teske, M. E., and Lewellen, W. S. (1976). Example calculation of atmospheric dispersion using second-order closure modelling. Proc. 3rd Symp. Atmos. Turbulence, Diffusion Air Quality, Raleigh, N.C., 19 to 22 October 1976, Am. Meteorol. Soc., Boston, Mass., pp. 149–54Google Scholar
  96. Turner, D. B. (1964). A diffusion model for urban area. J. Appl. Meteorol. 3 83–91.CrossRefGoogle Scholar
  97. Turner, D. B. (1970). Workbook of atmospheric dispersion estimates. US Environ. Prot.Agency, Publ. No. AP-26, 82 pp.Google Scholar
  98. United States Environmental Protection Agency (1977). User’s manual for single–source (CRSTER) model. US Environ. Prot. Agency, Publ., No. EPA–450/2–77–013, 284 pp.Google Scholar
  99. United States Government (14 August 1971). Fed. Regist. 36 part 2, 22406Google Scholar
  100. United States Weather Bureau (1955). Meteorology and atomic energy. US At. Energy Comm., Publ. No. AECU-3066Google Scholar
  101. Weber, A. H. (1976). Atmospheric dispersion parameters in gaussian plume modelling, part I, review of current systems and possible future developments. US Environ. Prot. Agency, Publ., No. EPA-600/-030a, 58 pp.Google Scholar
  102. Willner, L. (1977). Immissionsprognosen—Vergleich verschiedener Verfahren. Staub,37, 260–66 (in German)Google Scholar
  103. Wong, T. S., Heidorn, K., and Yap, D. (1976). Modelling sulphur dioxide levels in the Sarnia area. Water Air Soil Pollut.,5, 407–14CrossRefGoogle Scholar
  104. Yamada, T. (1977). A numerical experiment on pollutant dispersion in a horizontally- homogeneous atmospheric boundary layer. Atmos. Environ., 11, 1015–1024CrossRefGoogle Scholar
  105. Yeh, G. T., and Tsai, Y. J. (1976). Analytical solution of the three-dimensional diffusion equation with variable coefficients. Proc. 3rd Symp. Atmos. Turbulence, Diffusion Air Quality, Raleigh, N.C., 19 to 22 October 1976, Am. Meteorol. Soc., Boston, Mass., pp. 194–9Google Scholar

Copyright information

© Michel M. Benarie 1980

Authors and Affiliations

  • Michel M. Benarie
    • 1
  1. 1.Institut National de Recherche Chimique AppliquéeVert-le-PetitFrance

Personalised recommendations