Air pollution calculations for urban areas

  • Michel M. Benarie
Part of the Air Pollution Problems Series book series (AIRPP)


It is necessary first of all to define the words ‘model’ and ‘modelling’ clearly and definitively, as the colloquial use of technical jargon frequently causes the meanings of words to deviate from their original sense.


Wind Velocity Meteorological Parameter Urban Heat Island Ambient Concentration Light Wind 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anscombe, F. J. (1973). Graphs in statistical analysis. Am. Stat., 27, 17–21Google Scholar
  2. Benarie, M. (1975). Modelling urban air pollution. Atmos. Environ., 9, 552–3, discussionCrossRefGoogle Scholar
  3. Benarie, M. (1976). Urban air pollution modelling without computers. US Environ. Prot.Agency, Publ., No. EPA–600/4–76–055, 72 pp. (Nall Tech. Inf. Serv., No. NTIS–PB262393)Google Scholar
  4. Brier, G. W. (1973). Validity of the air quality display model calibration procedure. US Environ. Prot. Agency, Rep., No. EPA–R4–73–017, 28 pp.Google Scholar
  5. Brooks, C. E. P., and Carruthers, N. (1953). Handbook of Statistical Methods in Meteorology, HM Stationery Off., LondonGoogle Scholar
  6. Egger, J. (1973). On the determination of an upper limit of atmospheric predictability. Tellus,25, 435–43CrossRefGoogle Scholar
  7. Eriksson, B. (1962). Simple methods of statistical prognoses. Statistical Analysis in Meteorology, World Meteorol. Organ., Tech. Note, No. 71, pp. 87–114Google Scholar
  8. Fleming, R. J. (1971). On stochastic dynamic prediction, II, predictability and utility. Mon. Weather Rev.,99, 927–38CrossRefGoogle Scholar
  9. Godske, C. L. (1962). Methods of statistics and some applications to climatology. Statistical Analysis in Meteorology, World Meteorol. Organ., Tech. Note, No. 71, 9–86Google Scholar
  10. Hameed, S. (1974). Atmos. Environ., 8, 555–61CrossRefGoogle Scholar
  11. Kao, S. K., and Al-Gain, A. (1968). Large-scale dispersion of clusters of particles in the atmosphere. J. Atmos. Sci.,25, 214–21CrossRefGoogle Scholar
  12. Kao, S. K., and Powell, D. (1969). Large-scale dispersion of clusters of particles in the atmosphere, II, stratosphere. J. Atmos. Sci.,26, 734–40CrossRefGoogle Scholar
  13. Lamb, R. G. (1968). An air pollution model for Los Angeles. Univ. Calif., Los Angeles, Calif., M.S. ThesisGoogle Scholar
  14. Larcheveque, P. (1972). Turbulent dispersion—Eole experiment. Comm. Space Res. XV, Madrid, Publ.Google Scholar
  15. Lumley, J. L., and Panofsky, H. A. (1964). The Structure of Atmospheric Turbulence, Interscience, New York, 239 pp.Google Scholar
  16. Mahoney, J. R., and Egan, B. A. (1971). A mesoscale numerical model of atmospheric transport phenomena in urban areas. Proc. 2nd Int. Clean Air Congr., Washington, D.C., 6 to 11 December 1970 (eds H. M. Englund and W. T. Beery), Academic Press, New York, pp. 1152–7CrossRefGoogle Scholar
  17. Morel, P. (1970). Satellite techniques for automatic platform location and data relay, Comm. Space Res. XV, Madrid, Publ.Google Scholar
  18. Panofsky, H. A., and Brier, G. W. (1968). Some application of statistics to meteorology. Pennsylvania State Univ., Univ. Park, Pa, Publ., 224 pp.Google Scholar
  19. Robinson, G. D. (1967). Some current projects for global meteorological observation and experiment. Q. J. R. Meteorol. Soc.,93, 409–18CrossRefGoogle Scholar
  20. Robinson, G. D. (1971). The predictability of a dissipative flow. Q. J. R. Meteorol. Soc.,97, 300–12CrossRefGoogle Scholar
  21. Snedecor, G. W., and Cochran, W. G. (1969). Statistical Methods, 6th edn, Iowa State Univ. Press, Ames, IowaGoogle Scholar

Copyright information

© Michel M. Benarie 1980

Authors and Affiliations

  • Michel M. Benarie
    • 1
  1. 1.Institut National de Recherche Chimique AppliquéeVert-le-PetitFrance

Personalised recommendations