Advertisement

Recent developments in modelling

  • Michel M. Benarie
Part of the Air Pollution Problems Series book series (AIRPP)

Abstract

It should be noted that the contents of this chapter have not been indexed because a further time delay would have resulted.

Keywords

Ozone Concentration United States Environmental Protection Agency Complex Terrain Dispersion Parameter Pollutant Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anbar, D. (1978). A diffusion model for use with directional samples. Atmos. Environ.,12, 2131–8CrossRefGoogle Scholar
  2. Apling, A. J., Keddie, A. W. C., Weatherley, M. L. P. M., and Williams, M. L. (1977). The high pollution episode in London, December 1975. Warren Spring Lab., Stevenage, Rep., No. LR 263 (AP) 19 pp.Google Scholar
  3. Astarita, G., Wei, J., and Iorio, G. (1979). Theory of dispersion, transformation and deposition of atmospheric pollution using modified Green’s functions. Atmos. Environ.,13, 239–46CrossRefGoogle Scholar
  4. Benarie, M. (1979a). Attempt of classification of air pollution climate. World Meteorol. Organ. Tech. Conf. Reg. and Global Observation of Atmos. Pollut. Relative to Climate, Boulder, Colo., 20 to 24 August 1979, PreprintGoogle Scholar
  5. Benarie, M. (1979b). The simple box model simplified. Sci. Total Environ., in the pressGoogle Scholar
  6. Benarie, M. (1979c). Unpublished workGoogle Scholar
  7. Benjamin, S. F., Havlena, J. J., and Rowe, R. D. (1978). Field investigations of the dispersion of pollution across a ridge. Proc. 9th Meet. North Atlantic Treaty Organ-Comm. Challenges Modern Soc., Toronto, 28 to 31 August 1978, pp. 45–54Google Scholar
  8. Bornstein, R. D., and Anderson, S. F., (1979). A survey of statistical techniques used in validation studies of air pollution prediction models. Dep. Stat., Stanford Univ., Tech. Rep., No. 23, 47 pp.Google Scholar
  9. Bornstein, R. D., Fontana, P. H., and Thompson, W. T. (1978). Frictional retardation of sea breeze front penetration in New York city and its implications for pollutant distribution. World Meteorol. Organ. Symp. Boundary Layer Phys. Appl. to Specific Problems of Air Pollut., Norrköping, 19 to 23 June 1978, Preprint, 8 pp.Google Scholar
  10. Bornstein, R. D. (1979). Effects of sea breeze and synoptic frontal passages on sulfur dioxide concentrations in New York city. Proc. 4th Symp. Turbulence, Diffusion and Air Pollution, Reno, Nev., 15 to 18 January 1979, Am. Meteorol. Soc., Boston, Mass., pp. 429–34Google Scholar
  11. Bornstein, R. D., and Runca, E. (1978). Preliminary investigations of SO2patterns in Venice, Italy, using linked PBL and K models? including removal processes. Joint Am. Meteorol. Soc.—Air Pollut. Control Assoc. Conf. Appl. of Air Pollut. Meteorol., Salt Lake City, Utah, 29 November to 2 December 1977; pp. 277–82Google Scholar
  12. Box, G. E. P., and Jenkins, G. M. (1970). Time Series Analysis, Forecasting and Control, Holden—Day, San Francisco, p. 291Google Scholar
  13. Brubacker, K. L., and Rote, D. M. (1978). Dispersal models for sulfur oxides in urban environments. Sulfur in the Environment, vol. I (ed. J. O. Nriagu), Wiley, New York, chapter 6, pp. 172–241Google Scholar
  14. Carbone, R. (1978). An adaptive diagnostic model for air quality management. Atmos. Environ.,12, 1785–91CrossRefGoogle Scholar
  15. Chaum, D., Elkus, B., and Wilson, K. R. (1978). A statistically tested short term oxidant control strategy. A tmos. Environ.,12, 1777–83CrossRefGoogle Scholar
  16. Cho, B. H., and Kummler, R. H. (1977). Applications of mathematical models for SO2 dispersion. Proc. 70th Annu. Meet. Am. Inst. Chem. Eng. Symp. Dispersion and Transformation of Pollutants in the Atmos., Paper, No. 96 dGoogle Scholar
  17. Chock, D. P. (1978). A simple line-source model for dispersion near roadways. Atmos. Environ.,12, 823–9CrossRefGoogle Scholar
  18. Corrsin, S. (1974). Limitations of gradient transport model in random walks and in turbulence. Adv. Geophys.,18A, 25–60CrossRefGoogle Scholar
  19. Danard, M. B. (1972). Numerical modeling of carbon monoxide concentrations near a highway. J. Appl. Meteorol.,11, 947–57CrossRefGoogle Scholar
  20. Demerjian, K. L. (1976a). Photochemical diffusion models for air quality simulation: current status. Assessing transportation related impacts. Natl Acad. Sci., Spec. Rep., No. 167, pp. 21–33Google Scholar
  21. Demerjian, K. L. (1976b). Urban air quality simulation modeling—current status and future prospects. Symp. Air Pollut. Diffusion Modeling, Canberra, 18 to 20 August 1976, PreprintGoogle Scholar
  22. Demuth, C., Berger, A., Jacquart, Y., and Schayes, G. (1977). A K-analytical model, including calm wind situations. Proc. 8th Meet. North Atlantic Treaty Organ.-Comm. Challenges Modern Soc., Louvain-la-Neuve, 20 to 23 September 1977,pp. 610–30Google Scholar
  23. De Nevers, N., Lee, K. W., and Frank, N. H. (1979). Patterns in TSP distribution functions. J. Air Pollut. Control Assoc.,29, 32–7CrossRefGoogle Scholar
  24. Drufuca, G., and Giugliano, M. (1978). Relationship between maximum SO2 concentration, averaging time and average concentration in an urban area. Atmos. Environ.,12, 1901–5CrossRefGoogle Scholar
  25. Finzi, G., Fronza, G. and Rinaldi, S. (1978). Stochastic modelling and forecast of the dosage area product. Atmos. Environ.,12, 831–8CrossRefGoogle Scholar
  26. Finzi, G., Fronza, G., Rinaldi, S., and Zannetti, P. (1977a). Modelling and forecast of the dosage population product in Venice. Proc. IFAC Symp. Environ. Syst. Planning, Design and Control, 1 to 5 August 1977, KyotoGoogle Scholar
  27. Finzi, G., Fronza, G., and Spirito, A. (1977b). Univariate stochastic models and real time predictors of daily SO2 pollution in Milan. Proc. 8th Meet. North Atlantic Treaty Organ.–Comm. Challenges Modern Soc., Louvain-la-Neuve, 20 to 23 September 1977, pp. 152–65Google Scholar
  28. Fleischer, M. T., and Worley, F. L., Jr. (1978). Orthogonal collocation—application to diffusion from point sources. Atmos. Environ.,13, 1349–57CrossRefGoogle Scholar
  29. Gaddo, P. P., Corazzari, F., Giacomelli, L., Moscatelli, A., Fontana, M., and Ferrante, D. (1978). Mathematical model for local diffusion of carbon monoxide from motor vehicles. Proc. 9th Meet. North Atlantic Treaty Organ.–Comm. Challenges Modern Soc., Toronto, 28 to 31 August 1978, pp. 511–20Google Scholar
  30. Gifford, C. A. (1978). Parametrizing atmospheric diffusion. Proc. 9th Meet. North Atlantic Treaty Organ.–Comm. Challenges Modern Soc., Toronto, 28 to 31 August 1978, pp. 107–14Google Scholar
  31. Guldberg, P. H. (1979). Response. J. Air Pollut. Control. Assoc.,29, 388–9CrossRefGoogle Scholar
  32. Guldberg, P. H., and Kern, C. W. (1978). A comparative validation of the RAM and PTMTP models for short-term SO2 concentrations in two urban areas. J. Air Pollut.Control Assoc.,28, 907–10CrossRefGoogle Scholar
  33. Gumbel, E. J. (1958). Statistics of Extremes Columbia Univ. Press, New York;375 pp.Google Scholar
  34. Hanna, S. R., and Gifford, F. A. (1977). Application of the ATDL simple urban dispersion model to Frankfurt, West Germany. Proc. 8th Meet. North Atlantic Treaty Organ.-Comm. Challenges Modern Soc., Louvain-la-Neuve, 20 to 23 September 1977, pp. 202–7Google Scholar
  35. Hayes, S. R. (1978). A consideration of measures and standards of air quality simulation models. Proc. 9th Meet. North Atlantic Treaty Organ.–Comm. Challenges Modern Soc., Louvain-la-Neuve, 20 to 23 September 1977, pp. 527–37Google Scholar
  36. Hirtzl, C. S., and Quon, J. E. (1979). Statistical dependence of hourly carbon monoxide measurements. J. Air Pollut. Control Assoc.,29, 161–3CrossRefGoogle Scholar
  37. Hovind, E. L., Edelstein, M. W., and Paulson, D. G. (1978a). A method of computing maximum ground-level concentrations of SO2 under prolonged stagnation con-ditions. Proc. 9th Meet. North Atlantic Treaty Organ.–Comm. Challenges Modern Soc., Toronto, 28 to 31 August 1978, pp. 27–35Google Scholar
  38. Hovind, E. L., Spangler, T. C., and Graham, N. (1978b). Valley circulation influence on tall stack dispersion from a ridge location. Proc. 9th Meet. North Atlantic Treaty Organ.–Comm. Challenges Modern Soc., Toronto, 28 to 31 August 1978, pp. 17–26Google Scholar
  39. Huang, C. H. (1979). A theory of dispersion in turbulent shear flow. Atmos. Environ.,13, 453–63CrossRefGoogle Scholar
  40. Jensen, N. O., and Petersen, E. L. (1979). The box model and the acoustic sounder—a case study. Atmos. Environ.,13, 717–20CrossRefGoogle Scholar
  41. Keddie, A. W. C. (1976). Predictive modelling of air pollution in Fourth Valley study. Anglo-Soviet Environ. Symp., Stevenage, 2 December 1976, PaperGoogle Scholar
  42. Kirsch, J. W., and Mason, B. F. (1975). Mathematical models for air pollution studies involving the Oregon 1205 highway project. Syst., Sci. and Software, La Jolla, Calif. Rep., No. SSS-R-76–2744Google Scholar
  43. Kretzschmar, J. G., and Mertens, I. (1978). Influence of the turbulence typing scheme upon the yearly average concentrations calculated by means of a bigaussian model. Proc. 9th Meet. North Atlantic Treaty Organ.–Comm. Challenges Modern Soc., Toronto, 28 to 31 August 1978, pp. 121–32Google Scholar
  44. Kummler, R. H., Cho, B., Roginski, G., Sinha, R., and Greenberg, A. (1979). A comparative validation of the RAM and modified SAI models for short term SO2 concentrations in Detroit. J. Air Pollut. Control Assoc.,29, 720–3CrossRefGoogle Scholar
  45. Kyaw Tha Paw, U. (1978). Choosing dispersion coefficients for the prediction of maximum concentrations. J. Air Pollut. Control Assoc.,28, 1227–8CrossRefGoogle Scholar
  46. Laird, A. R., and Miksad, R. W. (1979). An application of a pseudo-second order SO2 reaction algorithm to urban air pollution modeling. J. Air Pollut. Control. Assoc.,29, 147–52CrossRefGoogle Scholar
  47. Lamb, R. G. (1978). A numerical simulation of dispersion from an elevated point source in the convective planetary boundary layer. Atmos. Environ.,12, 1297–304CrossRefGoogle Scholar
  48. Lamb, R. G. (1979). The effects of release height on material dispersion in the convective planetary boundary layer. Personal communication, 16 pp.Google Scholar
  49. Liu, M. K., and Yocke, M. A. (1978). Development and validation of the three-dimensional wind model for air quality analysis in complex terrain. Proc. 9th Meet. North Atlantic Treaty Organ.–Comm. Challenges Modern Soc., Toronto, 28 to 31 August 1978, pp. 79–88Google Scholar
  50. Mage, D. T., and Ott, W. R. (1978). Refinements of the lognormal probability model for analysis of aerometric data. J. Air Pollut. Control Assoc.,29, 796–8CrossRefGoogle Scholar
  51. Marziano, G. L., Shir, C. C., Shieh, L. J., Sutera, A., Gianolio, L., and Ciprian, M. (1979). Study of the SO2distribution in Venice by means of an air quality simulation model. Atmos. Environ.,13, 477–87CrossRefGoogle Scholar
  52. Mehta, K. N., and Balasubramanyam, R. (1978). Atmospheric transport of emissions over urban area sources. Atmos. Environ.,12, 1343–7CrossRefGoogle Scholar
  53. Mellor, G. L., and Yamada, T. (1974). A hierarchy of turbulence-closure models for planetary boundary layer. J. Atmos. Sci.,31, 1791–806CrossRefGoogle Scholar
  54. Miller, C. W. (1978a). An examination of gaussian plume dispersion parameters for rough terrain. Atmos. Environ.,12, 1359–64CrossRefGoogle Scholar
  55. Miller, C. W. (1978b). An application of the ATDL simple dispersion model. J. Air Pollut.Control Assoc.,28, 798–800CrossRefGoogle Scholar
  56. Nieuwstadt, F. T. M., and Van Ulden, A. P. (1978). A numerical study on the vertical dispersion of passive contaminants from a continuous source in the atmospheric surface layer. Atmos. Environ.,12, 2119–24CrossRefGoogle Scholar
  57. Noll, K. G., Miller, T. L., and Clagett, M. (1978). A comparison of three highway line source dispersion models. Atmos. Environ.,12, 1323–9CrossRefGoogle Scholar
  58. Organisation for Economic Cooperation and Development (1979). Project of conclusions on the development of modelling air and water pollution. Organ. Econ. Coop. and Dev., Publ., No. ENV/ECO/78.6, 1st revision, 9 May 1979, 15+v pp.Google Scholar
  59. Orfeuil,J.P. (1977). A purely statistical approach to the warning alarm and emergency problem. Proc. 8th Meet. North Atlantic Treaty Organ. - Comm. Challenges Modern Soc., Louvain-la-Neuve, 20 to 23 September 1977 pp. 122–51Google Scholar
  60. Padro, J. (1977). A procedure for computing vertical wind profiles in the planetary boundary layer. Proc. 8th Meet. North Atlantic Treaty Organ.–Comm. Challenges Modern Soc., Louvain-la-Neuve, 20 to 23 September 1977, pp. 360–74Google Scholar
  61. Panofsky, H., and Lipschutz, R. (1978). Theoretical background for the choice of stability parameters. Proc. 9th Meet. North Atlantic Treaty Organ. - Comm. Challenges Modern Soc., Toronto, 28 to 31 August 1978, pp. 115-9Google Scholar
  62. Pasquill, F. (1979). Atmospheric dispersion modeling. J. Air Pollut. Control Assoc., 29, 117–9CrossRefGoogle Scholar
  63. Pepper, D. W., Kearn, C. D., and Long, P. E., Jr (1979). Modeling the dispersion of atmospheric pollution using cubic splines and chapeau functions. Atmos. Environ.,13, 223–37CrossRefGoogle Scholar
  64. Petersen, W. B. (1978a). User’s guide for PAL—a gaussian–plume algorithm for point, area and line sources. US Environ. Prot. Agency, Environ. Monitoring Ser., Publ., No. EPA–600/4–78–013 (Natl Tech. Inf. Serv., No. NTIS–PB–281306)Google Scholar
  65. Petersen, W. B. (1978b). Use of wind fluctuation statistics to estimate dispersion near roadways. Proc. 9th Meet. North Atlantic Treaty Organ.–Comm. Challenges Modern Soc., Toronto, 28 to 31 August 1978, pp. 155–65Google Scholar
  66. Pitter, R. L. (1976). User’s manual ROADS, PSMOG, VISI. Oreg. Grad. Cent., Beaverton, Oreg., Publ.Google Scholar
  67. Prahm, L. P. (1977). Pseudospectral dispersion modeling. Proc. 8th Meet. North Atlantic Treaty Organ.–Comm. Challenges Modern Soc., Louvain-la-Neuve, 20 to 23 September 1977, pp. 635–57Google Scholar
  68. Ragland, K. W., and Pierce, J. J. (1975). Boundary layer model for air pollutant concentrations due to highway traffic. J. Air Pollut. Control Assoc., 25, 28–51CrossRefGoogle Scholar
  69. Reichenbächer, W., and Bornstein, R. D. (1979). Experiments with time and space varying upper boundary conditions in a PBL model. Proc. 4th Symp. Turbulence, Diffusion and Air Pollut., Reno, Nev., 15 to 18 January 1979, Am. Meteorol. Soc., Boston, Mass., pp. 483–9Google Scholar
  70. Roberts, E. M. (1979). Review of statistics of extreme values with applications to air quality data, part I. J. Air Pollut. Control Assoc., 29, 632–37; part II. J. Air Pollut. Control Assoc., 29, 733–40CrossRefGoogle Scholar
  71. Saab A., and Granier, J. P. (1977). New techniques of estimation of dispersion coefficients—a generalization of the diffusivity concept. Proc. 8th Meet. North Atlantic Treaty Organ.–Comm. Challenges Modern Soc., Louvain-la-Neuve, 20 to 23 September 1977, pp.399–417Google Scholar
  72. Schere, K. L., and Demerjian, K. L. (1978). A photochemical box model for urban air quality simulation. Proc. 4th Joint Conf. Sensing Environ. Pollutants, Am. Chem. Soc., Washington, D.C., pp. 116–33Google Scholar
  73. Schorling, M. (1977). Calculation of carbon monoxide caused by traffic. Proc. 8th Meet. North Atlantic Treaty Organ.–Comm. Challenges Modern Soc., Louvain-laNeuve, 20 to 23 September 1977, pp. 529–80Google Scholar
  74. Sheih, C. M. (1978). A puff pollutant dispersion model with wind shear and dynamic plume rise. Atmos. Environ., 12, 1933–8CrossRefGoogle Scholar
  75. Sistla, G., Samson, P., Keenan, M., and Rao, S. T. (1979). A study of pollutant dispersion near highways. Atmos. Environ.,13, 669–85CrossRefGoogle Scholar
  76. Sklarew, R. C. (1978a). Point source air pollution modeling. Proc. 9th Meet. North Atlantic Treaty Organ.–Comm. Challenges Modern Soc., Toronto, 28 to 31 August 1978, pp. 343–52Google Scholar
  77. Sklarew, R. C. (1978b). Verification of MADCAP model of photochemical air pollution in the San Diego Basin. Proc. 9th Meet. North Atlantic Treaty Organ.–Comm. Challenges Modern Soc., Toronto, 28 to 31 August 1978, pp. 333–42Google Scholar
  78. Sklarew, R. C., Fabrick, A. J., and Prager, J. E. (1972). Mathematical modelling of photochemical smog using the PIC method. J. Air Pollut. Control Assoc.,22, 865–9CrossRefGoogle Scholar
  79. Tangermann, G. (1978). Numerical simulations of air pollutant dispersion in a stratified planetary boundary layer. Atmos. Environ.,12, 1365–9CrossRefGoogle Scholar
  80. Tauber, S. (1978). Pattern recognition methods in air pollution control. Atmos. Environ., 12, 2377–82CrossRefGoogle Scholar
  81. Taylor, P. A. (1978). A numerical model of flow above gentle topography with changes in surface roughness. Proc. 9th Meet. North Atlantic Treaty Organ. — Comm. Challenges Modern Soc., Toronto, 28 to 31 August 1978, pp. 69–77Google Scholar
  82. Trout, D. A., and Lazaro, M. A. (1979). Comment on ‘A comparative validation of the RAM and PTMTP models for short-term SO2 concentrations in two urban areas’. J. Air Pollut. Control Assoc.,29, 386–8CrossRefGoogle Scholar
  83. Turner, D. B. (1979). Atmospheric dispersion modeling. J. Air Pollut. Control Assoc.,29, 502–19CrossRefGoogle Scholar
  84. Turner, D. B., and Busse, A. D. (1977). Experience with UNAMAP. Proc. 8th Meet. North Atlantic Treaty Organ. — Comm. Challenges Modern Soc., Louvain-la-Neuve, 20 to 23 September 1977, pp. 248–65Google Scholar
  85. Turner, D. B., and Novak, J. H. (1978). User’s guide for RAM. US Environ. Prot. Agency, Publ., No. EPA–600/8–78–016Google Scholar
  86. Turner, D. B. (1979). Comment on ‘A comparative validation of the RAM and PTMTP models for short-term SO2 concentrations in two urban areas’. J. Air Pollut. Control Assoc.,29, 385–6CrossRefGoogle Scholar
  87. United States Environmental Protection Agency (1978). Guideline to air quality models. US Environ. Prot. Agency, Publ., No. EPA–450/2–78–027, OAQPS No. 1. 2080, 91 pp.Google Scholar
  88. Van der Auwera, L. (1977). Forecasting the air pollution potential by means of a multiple regression model. Proc. 8th Meet. North Atlantic Treaty Organ. — Comm. Challenges Modern Soc., Louvain-la-Neuve, 20 to 23 September 1977 pp. 98–121.Google Scholar
  89. Van Ulden, A. P. (1978). Simple estimates for vertical diffusion from sources near the ground. Atmos. Environ.,12, 2125–9CrossRefGoogle Scholar
  90. Venkatram, A. (1979). Applications of pollutant frequency distributions. J. Air Pollut. Control Assoc.,29, 251–3CrossRefGoogle Scholar
  91. Wada, R. Y., Leong, E. Y., and Robinson, L. H. (1979). A methodology for analyzing alternative oxidant control strategies. J. Air Pollut. Control Assoc.,29, 346–51CrossRefGoogle Scholar
  92. Warner, T., Anthes, R. A., and McNab, A. L. (1978). Numerical simulation of coastal-zone boundary layer ventilation and pollution transport. Proc. 9th Meet. North Atlantic Treaty Organ. — Comm. Challenges Modern Soc., Toronto, 28 to 31 August 1978, pp. 557–68Google Scholar
  93. Weaving, J. H., Benjamin, S. F., Gaddo, P. P., and Repetto, F. (1978). The application of mathematical model to the estimation of the concentrations of pollutants in European cities. Proc. 9th Meet. North Atlantic Treaty Organ. — Comm. Challenges Modern Soc., Toronto, 28 to 31 August 1978, pp. 499–510Google Scholar
  94. Wengle, H., Van der Bosch, B., and Seinfeld, J. H. (1978). Solution of atmospheric diffusion problems by pseudo-spectral and orthogonal collocation methods. Atmos. Environ.,12, 1021–32CrossRefGoogle Scholar
  95. White, W. H., and Husar, R. B. (1976). A Lagrangian model of the Los Angeles smog aerosol. J. Air Pollut. Control Assoc.,26, 31–5CrossRefGoogle Scholar
  96. Whiteman, C. D., and McKee, T. B. (1978). Air pollution iniplication of inversion descent in mountain valleys. Atmos. Environ.,12, 2151–8CrossRefGoogle Scholar
  97. Wolff, G. T., and Lioy, P. J. (1978). An empirical model for forecasting maximum daily ozone levels in the northeastern U.S. J. Air Pollut. Control Assoc., 28, 1034–8CrossRefGoogle Scholar
  98. Yamada, T. (1978). A three-dimensional numerical study of complex atmospheric circulations produced by terrain. Conf. Sierra Nevada Meteorol., Am. Meteorol. Soc., Boston, Mass., pp. 61–7.Google Scholar
  99. Yamada, T. (1979a). An application of a three-dimensional, simplified second-moment closure numerical model to study atmospheric effects of a large cooling pond. Atmos. Environ., in the pressGoogle Scholar
  100. Yamada, T. (1979b). A numerical study of the effects of complex terrain on dynamics of airflow and pollutant dispersion. Proc. 4th Symp. Turbulence, Diffusion and Air Pollut., Reno, Nev., 15 to 18 January 1979, Am. Meteorol. Soc., Boston, Mass.Google Scholar
  101. Zannetti, P., Finzi, G., Fronza, G., and Rinaldi, S.. (1977). Time series analysis of Venice air quality data. Proc. IFAC Symp. Environ. Syst. Planning, Design and Control, Kyoto, 1 to 5 August 1977Google Scholar
  102. Zannetti, P. (1978). Time series analysis of Venice air quality data. Environmental Systems,Planning and Control (ed. H. Akashi), Pergamon, Oxford, pp. 295–300Google Scholar
  103. Zannetti, P., and Switzer, P. (1979a). The Kalman filtering method forecasting. IBM Sci. Cent., Palo Alto, Calif., Rep. , No. G320–3381, 27 pp.Google Scholar
  104. Zannetti, P. (1979b). Some problems of validation and testing of numerical air pollution models. Proc. 4th Symp. Turbulence, Diffusion and Air Pollut., Reno, Nev., 15 to 18 January 1979, Am. Meteorol. Soc., Boston, Mass., pp. 405–9Google Scholar

Copyright information

© Michel M. Benarie 1980

Authors and Affiliations

  • Michel M. Benarie
    • 1
  1. 1.Institut National de Recherche Chimique AppliquéeVert-le-PetitFrance

Personalised recommendations