Skip to main content

The concentration-frequency distribution

  • Chapter

Part of the book series: Air Pollution Problems Series ((AIRPP))

Abstract

The histogram of urban air pollutant concentrations sampled over any given time span (1 min, 1 h, 24 h, etc.) is quite skew. There are only a few near-zero values, but afterwards the frequency increases sharply, only to decrease again gradually towards the higher concentrations. A large number of skew distribution functions known in statistics can be fitted to such data: Poisson (Wipperman, 1966); negative binomial (Prinz and Stratmann, 1966); Weibull (Barlow, 1971; Curran and Frank, 1975; Tsukatani and Shoyi, 1977); exponential (Barry, 1971; Scriven, 1971; Curran and Frank, 1975); gamma (Pearson IV) and Pearson VI (Lynn, 1972); beta (Pearson I) (Lynn, 1972; Graedel et al. 1974); three-parameter log-normal (Mage, 1975; Larsen, 1977a,b). Pollack (1973, 1975) demonstrated that there is a fundamental similarity among these distributions when utilised to fit air quality data. Benarie (1971) (see also chapter 15) proved that in two limiting cases the concentrations are, as a very good approximation, log-normal. One of these cases is the concentration distribution due to the single point source; the other is the concentration distribution of the area source, when the number of identifiable individual sources in any direction is greater than 10 (homogeneous area source). When the receptor is influenced by a relatively small number of individual sources, deviations from the log-normal appear, and the distribution approaches one or other of the skew distributions quoted above.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitchinson, J., and Brown, J. A. C. (1969). The Log-normal Distribution, Cambridge Univ. Press, Cambridge, England, 176 pp.

    Google Scholar 

  • Barlow, R. E. (1971). Average time and maxima for air pollution concentration. Operations Res. Cent., Univ. Calif, Berkeley, Calif., Rep., No. ORC-71–17 (Natl Tech. Inf. Serv., No. NTIS AD-729–413)

    Google Scholar 

  • Barry, P. J. (1971). Use of argon-41 to study the dispersion of stack effluents. Proc. Symp. Nucl. Tech. Environ. Pollut., Int. At. Energy Agency, Vienna, pp. 241–53

    Google Scholar 

  • Benarie, M. M. (1971). About the validity of log-normal distribution of pollutant concentrations. Proc. 2nd Clean Air Congr., Washington, D.C., 6 to 10 December 1970 (eds H. M. Englund and W. T. Beery), Academic Press, New York, pp. 68–70 (in French)

    Google Scholar 

  • Coenen, W. (1976). Beschreibung des zeitlichen Verhaltens von Schadstoffkonzentrationen durch einen stetigen Markoffprozess. Staub, 36, 240–8 (in German)

    CAS  Google Scholar 

  • Curran, C. T., and Frank, H. N. (1975). Assessing the validity of log-normal model when predicting maximum air pollution concentrations. Proc. 68th Annu. Meet. Air Pollut. Control Assoc., Boston, Mass., 15 to 20 June 1975, Paper, No. 75–51.3, 17 pp.

    Google Scholar 

  • Gifford, F. A. (1972). The form of the frequency distribution of air pollution concentrations. Proc. Symp. Stat. Aspects Air Quality Data, Chapel Hill, N.C., 9 to 10 November 1972, US Environ. Prot. Agency, Publ., No. EPA–650/4–74–038, pp. 3–1–3–7

    Google Scholar 

  • Gould, G. (1961). The statistical analysis and interpretation of dustfall data. Proc. 54th Annu. Meet. Air Pollut. Control Assoc., New York, N. Y.

    Google Scholar 

  • Graedel, T. E., Kleiner, B., and Patterson, C. C. (1974). Measurements of extreme concentration of tropospheric hydrogen sulphide J. Geophys. Res., 79, 44–67

    Google Scholar 

  • Hunt, W. F., Jr. (1972). The precision associated with sampling frequency of log-normally distributed air pollution measurements. J. Air Pollut. Control Assoc., 22, 687–91

    Article  Google Scholar 

  • Inoue, R., and Watanabe, Y. (1977). Statistical properties of sulphur dioxide concentrations at continuous monitoring stations in Japan. Proc. 4th Clean Air Congr., Tokyo, 16 to 20 May 1977, pp. 150–2

    Google Scholar 

  • Jost, D., Kaller, R., Markush, H., and Rudolf, W. (1974). Analysis of 6 years’ continuous air pollution surveillance. Automatic Air Quality Monitoring Systems (ed. T. Schneider) Elsevier, Amsterdam, pp. 251–260

    Google Scholar 

  • Kahn, H. D. (1973). Note on the distribution of air pollutants. J. Air Pollut. Control Assoc., 23, 973

    Article  CAS  Google Scholar 

  • Knox, J. B., and Pollack, R. I. (1972). An investigation of the frequency distributions of surface air pollutant concentrations. Proc. Symp. Stat. Aspects Air Quality Data, Chapel Hill, N.C., 9 to 10 November 1972, US Environ. Prot. Agency, Publ., No. EPA–650/4–74–038, pp. 9–10–9–17

    Google Scholar 

  • Kretzschmar, J. G. (1977). Comments on ‘On determining the statistical parameters for pollution concentration from a truncated data set’ by Kushner, E. J., Atm. Env.,11, 866

    Article  Google Scholar 

  • Kushner, E. J. (1976). On determining the statistical parameters for pollution concentration from a truncated data set. Atm. Env.,10, 975–9

    Article  CAS  Google Scholar 

  • Larsen, R. I. (1961). A method for determining source reduction required to meet air quality standards. J. Air Pollut. Control Assoc.,11, 71–6

    Article  CAS  Google Scholar 

  • Larsen, R. I. (1964). United States air quality. Arch. Environ. Health,8, 325–33

    Article  CAS  Google Scholar 

  • Larsen, R. I. (1969). A new mathematical model of air pollutant concentration, averaging time and frequency. J. Air Pollut. Control Assoc.,19, 24–30

    Article  CAS  Google Scholar 

  • Larsen, R. I. (1971). A mathematical model for relating air quality measurements to air quality standards. US Environ. Prot. Agency, Publ., No. AP-89, 56 pp.

    Google Scholar 

  • Larsen, R. I. (1973). An air quality data analysis system for interrelating effects, standards and needed source reduction. J. Air Pollut. Control Assoc., 23, 933–40

    Article  CAS  Google Scholar 

  • Larsen, R. I. (1974). An air quality data analysis system for interrelating effects, standards and needed source reductions, part 2. J. Air Pollut. Control Assoc.,24, 551–8

    Article  CAS  Google Scholar 

  • Larsen, R. I. (1975). Personal communication

    Google Scholar 

  • Larsen, R. I. (1977a). An air quality data analysis system for interrelating effects, standards and needed source reductions. J. Air Pollut. Control Assoc., 27, 454–9

    Article  CAS  Google Scholar 

  • Larsen, R. I. (1977b). An air quality data analysis system for interrelating effects, standards and needed source reductions, a summary. Proc. 4th Clean Air Congr., Tokyo, 16 to 20 May 1977, pp. 322–5

    Google Scholar 

  • Larsen, R. I., Benson, F. B., and Jutze, G. A. (1965). Improving the dynamic response of continuous air pollutant measurements with a computer. J. Air Pollut. Control Assoc.,15, 19–22

    Article  CAS  Google Scholar 

  • Larsen, R. I., Zimmer, C. E., Lynn, D. A., and Blemel, K. G. (1967). Analysing air pollutant concentration and dosage data. J. Air Pollut. Control Assoc.,17, 85–93

    Article  CAS  Google Scholar 

  • Lynn, D. A. (1972). Fitting curves to urban suspended particulate data. Proc. Symp. Stat. Aspects Air Quality Data, Chapel Hill, N.C., 9 to 10 November 1977, US Environ. Prot. Agency, Publ., No. EPA–650/4–74–038, pp. 13–1–13–28

    Google Scholar 

  • McGuire, T., and Noll, K. E. (1971). Relationship between concentrations of atmospheric pollutants and averaging time. Atmos. Environ.,5, 291–8

    Article  CAS  Google Scholar 

  • Mage, T. D. (1975). An improved statistical model for analysing air pollution concentration data. Proc. 68th Annu. Meet. Air Pollut. Control Assoc., Boston, Mass., 15 to 20 June 1975, Paper, No. 57–51.4, 28 pp.

    Google Scholar 

  • Marcus, A. H. (1972). A stochastic model for estimating pollutant exposure by means of air quality data. Proc. Symp. Stat. Aspects Air Quality Data, Chapel Hill, N.C., 9 to 10 November 1972, US Environ. Prot. Agency, Publ., No. EPA–650/4–74–038, pp. 7–1–7–15

    Google Scholar 

  • Milokay, P. G. (1972). Environmental applications of the Weibull distribution function: oil pollution. Science,176, 1019–21

    Article  Google Scholar 

  • de Nevers, N., Lee, K. W., and Frank, N. H. (1977). Extreme values in TSP distribution functions. J. Air Pollut. Control Assoc.,27, 995–1000

    Article  Google Scholar 

  • Pollack, R. I. (1973). Studies of pollutant concentration frequency distributions. Univ. Calif., Livermore, Calif., Thesis, 82 pp.

    Google Scholar 

  • Pollack, R. I. (1975). Studies of pollutant concentration frequency distributions. US Environ.Prot. Agency, Publ., No. EPA–650/4–75–004, 82 pp. (Reprint of Pollack (1973))

    Google Scholar 

  • Possanzini, M., and Liberti, A. (1972). Mathematical model for the evaluation of frequency distribution of concentrations of an atmospheric pollutant. Inquinamento,14, 23–27 (in Italian)

    Google Scholar 

  • Prinz, B., and Stratman, H. (1966). The statistics of propagation conditions in the light of continuous concentration measurements of gaseous pollutants. Staub,26, 4–12

    Google Scholar 

  • Scriven, R. A. (1971). Use of argon-41 to study the dispersion of stack effluents. Proc. Symp. Nucl. Tech. Environ. Pollut., Int. At. Energy Agency, Vienna, pp. 254–5

    Google Scholar 

  • Shoyi, H., and Tsukatani, T. (1973). Statistical model of air pollutant concentration and its application to the air quality standards. Atmos. Environ.,7, 485–501

    Article  Google Scholar 

  • Shoyi, H. (1975). Statistical model of air pollutant concentration. Kansai Univ., Technol. Rep., No. 17, pp. 121–31

    Google Scholar 

  • Singapurwalla, N. D. (1972). Extreme values from a lognormal law with applications to air pollution problems. Technometrics,14, 703

    Article  Google Scholar 

  • Stern, A. C. (1969). The systems approach to air pollution control. Proc. Clean Air Soc. Aust. N.Z. Clean Air Conf., vol.2, pp. 2.4.1–2. 4. 22

    Google Scholar 

  • Tsukatani, T., and Shoyi, H. (1977). Statistical model of air pollutant concentration. Proc. 4th Clean Air Congr., Tokyo, 16 to 20 May 1977, pp. 315–17

    Google Scholar 

  • United States Government (1958). Air pollution measurements of the national air sampling network, analyses of suspended particulates, 1953 to 1957. Dep. Health Educ. Welfare, Publ. Health Serv., Publ., No. 637, p. 245

    Google Scholar 

  • Wipperman, F. (1966). On the distribution of concentration fluctuations of a harmful gas propagating in the atmosphere. Unpublished MS, 17 pp.

    Google Scholar 

  • Zimmer, C. E., and Larsen, R. I. (1965). Calculating air quality and its control. J. Air Pollut. Control Assoc.,15, 565–72

    Article  CAS  Google Scholar 

  • Zimmer, C. E., Tabor, E. C., and Stern, A. C. (1959). Particulate pollutants in the air of the United States. J. Air Pollut. Control Assoc.,9, 136–40

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 1980 Michel M. Benarie

About this chapter

Cite this chapter

Benarie, M.M. (1980). The concentration-frequency distribution. In: Urban Air Pollution Modelling. Air Pollution Problems Series. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-03639-4_14

Download citation

Publish with us

Policies and ethics