Advertisement

Long-term plume models

  • Michel M. Benarie
Part of the Air Pollution Problems Series book series (AIRPP)

Abstract

In the introduction to section 3.3 it was stressed that, because there are an extremely large number of combinations of plume rise equations, wind direction and speed class, vertical wind profile laws, number and specification of stability classes, choice of dispersion parameters and mixing heights, etc., each air pollution specialist could have his own particular gaussian plume model. A list of the gaussian long-term models, as complete as possible up to the beginning of 1977, was provided by Jost and Gutsche (1977) in the form of a table, and most of the variants listed either are basically identical with one of the main prototypes discussed below or represent experimental programmes only which have not yet attained widespread use.

Keywords

Wind Speed Wind Direction Area Source Sulphur Dioxide Stability Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Briggs, G. A. (1969). Plume rise. Div. Tech. Inf., US At. Energy Comm., Oak Ridge, Tenn., Publ., 81 pp.Google Scholar
  2. Bringfelt, B., Hjorth, T., and Ring, S. (1974). A numerical air pollution dispersion model for central Stockholm. Atmos. Environ.,8, 131–48CrossRefGoogle Scholar
  3. Brubaker, K. L., Brown, P., and Cirillo, R. R. (1977). Addendum to user’s guide for climatological dispersion model. US Environ. Prot. Agency, Publ., No. EPA-450/377–015, 134 pp.Google Scholar
  4. Busse, A. D., and Zimmerman, J. R. (1973). User’s guide for the climatological dispersion model. US Environ. Prot. Agency, Rep., No. EPA–R4–73–024, 144 pp. (revised edn, May 1974 )Google Scholar
  5. Calder, K. L.(1970). A climatological model for multiple-source urban air pollution. Proc. 1st Meet. North Atlantic Treaty Organ.–Comm. Challenges Modern Soc. Expert Panel Air Pollut. Modelling, Frankfurt, 9 October 1970Google Scholar
  6. Calder, K. L. (1971). A climatological model for multiple-source urban air pollution. Proc. 2nd Meet. North Atlantic Treaty Organ.–Comm. Challenges Modern Soc. Expert Panel Air Pollut. Modelling, Paris, 33 pp.Google Scholar
  7. Christiansen, J. H., and Porter, R. A. (1976a). User’s guide to the Texas climatological model. Texas Air Control Board, Austin, Texas, Publ., 53 pp.Google Scholar
  8. Christiansen, J. H. (1976b). Prediction of annual sulphur dioxide concentrations for Frankfurt am Main, FRG, August 1971 to July 1972. Texas Air Control Board, Austin, Texas, Publ., 22 pp. + appendixesGoogle Scholar
  9. Clarke, J. F.(1964). A simple diffusion model for calculating point concentrations from multiple sources. J. Air Pollut. Control Assoc.,14, 347–52CrossRefGoogle Scholar
  10. Cocquyt, G., De Greif, J. F., and Vandervee, J. (1974). Data management for the computation of urban pollution models. Automatic Air-Monitoring Systems (ed. T. Schneider), Elsevier, Amsterdam, pp. 165–94Google Scholar
  11. CONCAWE (1966). The calculation of atmospheric dispersion from a stack. CONCAWE, The Hague, Publ., 57 pp.Google Scholar
  12. Conley, L. A., Croke, E. J., Kennedy, A. S., King, R. F., Norco, J. E., Roberts, J. J., Rossin, A. D., and Wolsko, T. D.(1971). Isopleth area tables. Argonne Natl Lab., Publ., No. ANL/ES-8, 60 pp. + 334 tablesGoogle Scholar
  13. Dabberdt, W. F., Ludwig, F. L., and Johnson, W. B. (1973). Validation and application of an urban diffusion model for vehicular pollutants. Atmos. Environ.,7, 603–18CrossRefGoogle Scholar
  14. Fabrick, A. J., and Sklarew, R. C.(1975). Cross evaluation of regional air pollution models. Proc. 68th Annu. Meet. Air Pollut. Control Assoc., Boston, Mass., 15 to 20 June 1975, Preprint, No. 75–04.6, 15 pp.Google Scholar
  15. Fortak, H. G. (1966). Rechnerische Ermittlung der S02-Grundbelastung aus Emissionsdaten, Anwendung auf die Verhältnisse des Stadtgebietes von Bremen. Inst. Theor. Meteorol., Free Univ. Berlin, Publ. (in German)Google Scholar
  16. Fortak, H. G. (1970a). Mathematisches Modell zur Imissionsermittlungen in industriellen Ballungsgebieten. VDI Ber.,149, 145–56 (in German)Google Scholar
  17. Fortak, H. G. (1970b). Numerical simulation of the temporal and spatial distributions of urban air pollution concentrations. Proc. Symp. Multiple–source Urban Diffusion Models Fortak, H. G.(ed. A. Stern), US Environ. Prot. Agency, Publ.,No. AP–86, pp. 9–1–9–33Google Scholar
  18. Fortak, H. G. (1970c). Die Anwendung der Ausbreitungsrechnung—ein kritischer Uberblick. Dtsch. Forschungsgem., Komm. Erforsch. Luftverunreinigung, Mitt.,7, 26–39, especially discussions on p. 49Google Scholar
  19. Fortak, H. G., Gutsche, B., and Stern, R. (1975). Further investigation of the ambient air uality situation in the Unter-Main region making use of Fortak’s dispersion model. Proc. 6th North Atlantic Treaty Organ.– Comm. Challenges Modern Soc. Int. Tech. Meet. Air Pollut. Modelling, Frankfurt, 24 to 26 September 1975, pp. 149–69Google Scholar
  20. Fuggle, R. F., and Dutkiewicz, R. K. (1977). An air pollution survey of Cape Town and its comparison with selected computer models. Proc. 4th Int. Clean Air Congr., Tokyo, 16 to 20 May 1977,pp. 267–71Google Scholar
  21. Gifford, F. A., and Hanna, S. R. (1973). Modelling urban air pollution. Atmos. Environ., 7, 131–6CrossRefGoogle Scholar
  22. Goumans, H. H. J. M., and Clarenburg, L. A. (1977). Modelling NOX concentrations in urban regions, a special application to the Rijnmond situation. Proc. 4th Int. Clean Air Congr., Tokyo, 16 to 20 May 1977, pp. 234–7Google Scholar
  23. Gutsche, B., and Stern, R. (1977). Brief description of Fortak’s multiple-source urban diffusion model. North Atlantic Treaty Organ.—Comm. Challenges Modern Soc. Air Pollut. Pilot Study, Tech. Doc., No. M.P. 1/1977 3.4, 8 pp., appendixGoogle Scholar
  24. Hamburg, F. C. (1971).Urban model improvement by input of representative, nonzero stack height winds.Proc. 64th Annu. Meet. Air Pollut. Control Assoc., Atlantic City, N.Y., 27 June to 1 July 1971 , 24 pp.Google Scholar
  25. Hrenko, J. M., and Turner, D. B. (1975).An efficient gaussian plume multiple-source air quality algorithm. J. Air Pollut. Control Assoc.,26, 570–5Google Scholar
  26. Hrenko, J. M.(1976). Proc. 68th Annu. Meet. Air Pollut. Control Assoc., Boston, Mass., 15 to 20 June 1976, Paper, No. 75–04. 3, 11 pp.Google Scholar
  27. Huisman, M. L., and Verheul, C. M. (1974). STACMAP air pollution dispersion model. K. Inst. Ing., Haag, Publ. (in Dutch)Google Scholar
  28. Irwin, J. S. (1976). The application of the SCAM (sampled chronological air quality model) to the NATO common data base for Frankfurt. Proc. 7th North Atlantic Treaty Organ.—Comm. Challenges Modern Soc. Expert Panel Air Pollut. Modelling, Durham, N.C., 13 to 16 September 1976Google Scholar
  29. Jost, D., and Gutsche, B. (1977).International trend in standardisation of air pollution modelling and its application. Proc. 4th Int. Clean Air Congr., Tokyo, 6 to 20 May 1977, pp. 261–6Google Scholar
  30. Khanna, S. B. (1976). Handbook for UNAMAP.Walden Div., Abcor Inc., Wilmington, Mass., Publ., 108 pp. (Natl Tech. Inf. Servi.,No. UNAMAP NTIS-PB229771 (tape)) (reprinted 1977)Google Scholar
  31. Kitabayashi, K., and Yokoyama, N. (1974). Simulation of atmospheric pollution in industrial cities. Ind. Public Nuisance, 10, 2074–83 (in Japanese)Google Scholar
  32. Koch, R. C., and Stadsklev, G. H. (1973). A user’s manual for the sampled chronological input model (SCIM). Geomet Inc., Rockville, Md., Rep., No. E–261 (US Environ. Prot. Agency, Contract, No. 68–02–0281)Google Scholar
  33. Koch, R. C., and Thayer, S. D. (1971). Validation and sensitivity analysis of the gaussian multiple-source urban diffusion model.Geomet Inc., Rockville, Md, Publ., No. APDT-0935, 181 pp. + appendixes(Nail Tech. Inf. Servi., No. NTISPB-206951)Google Scholar
  34. Koch, R. C.(1972). Validity of the multiple-source gaussian plume urban diffusion model using hourly estimates of input. Proc. Conf. Urban Environ. and 2nd Conf. Biometeorol., Philadelphia, Pa, 31 October to 2 November 1972, Am. Meteorol. Soc., Boston, Mass., pp. 64–8Google Scholar
  35. Lucas, D. H. (1958). The atmospheric pollution of cities. Int. J. Air Pollut.,1, 71–86Google Scholar
  36. McElroy, J. L., and Pooler, F. (1968). St Louis dispersion study, vol. II, analysis. US Natl Air Pollut. Control Admin., Publ., No. AP-53, 51 pp.Google Scholar
  37. Martin, D. O. (1971). An urban diffusion model for estimating long term average values of air quality. J. Air Pollut. Control Assoc.,21, 16–19CrossRefGoogle Scholar
  38. Martin, D. O., and Tikvart, J. A. (1968). A general atmospheric diffusion model for estimating the effects of one or more sources on air quality. Proc. 61st Annu. Meet. Air Pollut. Control Assoc., St Paul, Minn., June 1968, Air Pollut. Control Assoc., Publ., No. APCA-68–148Google Scholar
  39. Masser, C. C., and Hammerle, J. R. (1975). Using sensitivity analysis to determine dispersion modelling input requirements. Proc. 6th North Atlantic Treaty Organ.—Comm. Challenges Int. Tech. Meet. Air Pollut. Modelling, Frankfurt, 24 to 26 September 1975 p. 4436–461Google Scholar
  40. Milford, S. N., McCoyd, G. C., Aronowitz, L., and Scanlon, J. H. (1970b). Comparison of air pollution models with aerometric data for the air quality region centred on New York city. Proc. 2nd Int. Clean Air Congr., Washington, D.C., 6 to 11 December 1970 (eds H. M. Englund and W. T. Beery ), Academic Press, New York, 1971, pp. 1168–76Google Scholar
  41. Milford, S. N., McCoyd, G. C., Aronowitz, L., Scanlon, J. H., and Simon, C. (1970a). Air pollution models of the New York—New Jersey—Connecticut air quality region. Proc. 63rd Annu. Meet. Air Pollut. Control Assoc., St Louis, Mo., Paper, No. 70–77Google Scholar
  42. Milford, S. N. (1971). Developing a practical dispersion model for an air quality region. J. Air Pollut. Control Assoc., 21, 549–54CrossRefGoogle Scholar
  43. Mozaki, K. Y. (undated). Mixing depth model using hourly surface observations, part I, model. US Air Force Environ. Tech. Appl. Cent., Washington, D.C., Rep. No. 7053Google Scholar
  44. Nieuwstadt, F. T. M. (1974). The gaussian plume model. R. Neth. Inst., De Bilt, Publ.,No. KNMI WR 74–15 (in Dutch)Google Scholar
  45. Nieuwstadt, F. T. M., Verheul, C. M., and Addicks, J. (1976). The validation of the gaussian dispersion model for long-term average ground-level concentrations in the Rijnmond region.Proc. 7th Int. Tech. Meet. Air Pollut. Modelling and its Appl., Airlie, Va, 7 to 10 September 1976,1 pp. + appendixGoogle Scholar
  46. Ott, W., Clarke, J. F., and Ozolins, G. (1967). Calculating future carbon monoxide emissions and concentrations from urban traffic data. Dep. Health, Educ. Welfare, US Natl Air Pollut. Control Admin., Publ., No. 999-AP-41, 40 pp.Google Scholar
  47. Pooler, F., Jr. (1961). A prediction model of mean urban pollution for use with standard wind rose. Int. J. Air Water Pollut., 4, 199–211Google Scholar
  48. Porter, R. A., and Christiansen, J. H. (1976). Two efficient gaussian plume models developed at the Texas Air Control Board. Proc. 7th North Atlantic Treaty Organ.—Comm. Challenges Modern Soc. Int. Tech. Meet. Air Pollut. Modelling, Durham, N.C., 13 to 15 September 1976Google Scholar
  49. Rubin, E. S. (1974). The influence of annual meteorological variations on regional air pollution modelling: a case study of Allegheny county, Pennsylvania. J. Air Pollut.Control Assoc.,24, 349–56CrossRefGoogle Scholar
  50. Scupholme, P. L., Cadron, E. C., Cutolo, G. F., Goldbach, J., Truchot, A., Verheul, C. M., and Van der Wee, P. (1977). The relative contribution of industrial and domestic emissions to SO2 urban pollution. CONCAWE Rep., No. M/77, 37 pp.Google Scholar
  51. Slater, H. H. (1974). Application of implementation planning programme (IPP) modelling analysis to the New Jersey—New York—Connecticut interstate AQCR. Proc. 5th Meet. North Atlantic Treaty Organ.—Comm. Challenges Modern Soc. Expert Panel Air Pollut. Modelling, Roskilde, 4 to 6 June 1974, pp. 9–1–9–56Google Scholar
  52. Slater, H. H., and Tikvart, J. A. (1974).Application of a multi–source urban model.Proc. 5th Meet. North Atlantic Treaty Organ.—Comm. Challenges Modern Soc. Expert Panel Air Pollut. Modelling, Roskilde, 4 to 6 June 1974,pp. 14–1–14–15Google Scholar
  53. Strott, J. K., and Christ, W. (1975).Sensitivity analysis of parameters affecting the results of gaussian models.Proc. 6th North Atlantic Treaty Organ.—Comm. Challenges Modern Soc. Int. Tech. Meet. Air Pollut. Modelling, Frankfurt, 24 to 26 September 1975,pp. 529–48Google Scholar
  54. Stümke, H. (1963). Vorschlag einer empirischen Formel für die Schornsteinüberhöhung. Staub,23, 549–56 (in German)Google Scholar
  55. TRW Systems Group (1969). Air quality display model.TRW Syst. Group., Publ.(Public Health Serv., US Natl Air Pollut. Admin., Contract, No. PH–22–68–60)(Natl Tech. Inf. Serv.,No. NTIS PB–189 194)Google Scholar
  56. Turner, D. B. (1964). A diffusion model for an urban area. J. Appl. Meteorol. 3, 83–91CrossRefGoogle Scholar
  57. Turner, D. B. (1972). Air quality frequency distribution from dispersion models compared with measurements. Proc. Symp. Stat. Aspects Air Quality Data, Chapel Hill, N.C., 9 to 10 November 1972Google Scholar
  58. Turner, D. B. (1976). The application of the CDM (climatological dispersion model) to the NATO common data base for Frankfurt. Proc. 7th Meet. North Atlantic Treaty Organ.-Comm. Challenges Modern Soc. Expert Panel Air Pollut. Modelling, Durham, N.C., 13 to 16 September 1976Google Scholar
  59. Wangen, L. E., and Rote, D. M. (undated). The effects of temporal variations in emissions and meteorology on annual average concentration calculations using a climatological dispersion model. Argonne Natl Lab., Unnumbered Doc. 39 pp.Google Scholar
  60. Young, J. W. S. (1978). The overlay technique—a simple approach to the topography problem, 1, long term concentrations. Atmospheric Pollution 1978 (ed. M. Benarie), Elsevier, Amsterdam, 193–8CrossRefGoogle Scholar
  61. Zimmermann, J. R. (1971).Some preliminary results of modelling from the air pollution study of Ankara, Turkey.Proc. 2nd Meet. North Atlantic Treaty Organ.-Comm. Challenges Modern Soc. Expert Panel Air Pollut. Modelling ,Paris, 28 pp.Google Scholar
  62. Zimmermann, J. R. (1972).The NATO-CCMS air pollution study of St Louis, Mo. Proc. 3rd Meet. North Atlantic Treaty Organ.-Comm. Challenges Modern Soc. Expert Panel Air Pollut. Modelling, Paris, 2 to 3 October 1972, pp. IV-1-IV-15Google Scholar

Copyright information

© Michel M. Benarie 1980

Authors and Affiliations

  • Michel M. Benarie
    • 1
  1. 1.Institut National de Recherche Chimique AppliquéeVert-le-PetitFrance

Personalised recommendations