Advertisement

Statistical relationships

  • Michel M. Benarie
Part of the Air Pollution Problems Series book series (AIRPP)

Abstract

If a number of air quality observations have been made at a given place, the information is usually concentrated in tables or graphs. Often, a further step towards concentration is undertaken by condensing groups of figures into averages coupled with their standard deviations: these are called descriptive statistical parameters, and the tabulation, averaging, etc., process is called descriptive statistics. However, we are interested not only in the adequate representation of observed or observable data but also in the relationships that permit conclusions to be drawn from these observations (that is, samples) for other as yet unobserved samples or even for the whole population of observable samples. Thus even the most complex statistical model is based on a group of observations, and statistical models are essentially empirical. This basic simple statement encompasses all the limitations of these models from the most simple to the mathematically most complex.

Keywords

Wind Speed Wind Direction Wind Velocity Sulphur Dioxide Meteorological Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alishouse, J. C., Crone, L. J., Fleming, H. E., Van Cleef, F. L., and Wark, D. Q. (1967). A discussion of empirical orthogonal functions and their application to vertical temperature profiles. Tellus, 19, 477–81CrossRefGoogle Scholar
  2. Aron, R. H., and Aron, I.-M. (1978). Statistical forecasting models, 1, carbon monoxide and II, oxidant concentrations in the Los Angeles Basin. J. Air Pol. Contr. Assoc., 28, 681–8CrossRefGoogle Scholar
  3. Barlow, R. E., and Singapurwalla, N. D. (1972). Averaging time and maxima for dependent observations. Proc. Symp. Stat. Aspects Air Quality Data, US Environ. Prot. Agency, Publ., No. EPA–650/4–74–038, Paper, No. 9–10, pp. 6–1–6–21Google Scholar
  4. Barrett, C. F. (1963). Correlations of smoke concentration in Great Britain. Int. J. Air Water Pollut., 7, 991–3Google Scholar
  5. Benarie, M., Badellon, D., Menard, T., and Nonat, A. (1971). The use of multiple regression equations for the assessment and short-term forecasting of urban area background pollution. Proc. IASPS Symp. Stat. Aspects Air Pollut., Cambridge, Mass., 29 August to 3 September 1971 (ed. J. W. Pratt ), Marcel Dekker, New York, 1974, pp. 249–73Google Scholar
  6. Bezuglaya, E. Y., Gorchiev, A. A., and Razbegaeva, E. A. (1973). Annual and diurnal variation in the content of atmospheric contaminants under urban conditions. Air Pollution and Atmospheric Diffusion (ed. M. E. Berlyand), Halsted Press, New York, Isr. Programme Sci. Transl, Jerusalem, pp. 160–70Google Scholar
  7. Blackman, R. B., and Tukey, J. W. (1958). The Measurement of Power Spectra, Dover, New York, 190 pp.Google Scholar
  8. Blade, E., and Ferrand, E. F. (1969). Sulphur dioxide air pollution in New York city:statistical analysis of 12 years. J. Air Pollut. Control Assoc., 19, 873–8CrossRefGoogle Scholar
  9. Box, G. E. P., and Jenkins, G. M. (1970). Time Series Forecasting and ControlHolden—Day, San Francisco, 553 pp.Google Scholar
  10. Box, G. E. P., Jenkins, G. M., and Bacon, D. W. (1967). Models for forecasting seasonal and nonseasonal time series. Adv. Semin. Spectral Analysis of Time Series (ed. W. Harris), Wiley, New York, pp. 271–311Google Scholar
  11. Bringfelt, B. (1971). Important factors for the sulphur dioxide concentration in central Stockholm. Atmos. Environ., 5, 949–72CrossRefGoogle Scholar
  12. British Government (1945). Atmospheric pollution in Leicester. Dep. Sci. Ind. Res., Tech. Paper, No. 1, HM Stationery Off., LondonGoogle Scholar
  13. Brocco, D., and Sirilli, G. (1973). Una stima della relazione tra il biossido di zolfo ed alcuni fattori meteorologici. Inquinamento, No. 3, pp. 24–8 (in Italian)Google Scholar
  14. Bryan, J. G. (1944). Unpublished paperGoogle Scholar
  15. Cavallaro, A., Gualdi, R., and Tebaldi, G. (1977). The air pollution monitoring network on Milan district area: structure and results. Proc. 4th Int. Clean Air Congr., Tokyo, 16 to 20 May 1977, pp. 641–4Google Scholar
  16. Chandler, T. J., and Elsom, D. M. (1977). Meteorological controls upon ground level concentrations of smoke and sulphur dioxide in two urban areas of the U.K. Warren Spring Lab., Rep. No. LR-245 (AP), 78 pp.Google Scholar
  17. Chass, R. L., Birakos, J. N., Brunelle, M. F., and Mosher, J. (1972). The school and health smog warning system of Los Angeles county. Proc. 65th Annu. Meet. Air Pollut. Control Assoc., Los Angeles Air Pollut. Control Dist., Paper, No. 72–59Google Scholar
  18. Cholak, J., Schaeffer, L. J., and Yeager, D. (1968). The air transport of lead compounds present in automobile exhaust gases. Am. Ind. Hyg. Assoc. J., 29, 562–8CrossRefGoogle Scholar
  19. Clarke, J. C., and Peterson, J. T. (1971). An empirical model using eigenvectors to calculate the temporal and spatial variations of the St Louis heat island. J. Appl. Meteorol., 12, 195–210CrossRefGoogle Scholar
  20. Commins, V. T., and Waller, K. E. (1967). Observations from a 10-year study of pollution at a site in the city of London. Atmos. Environ., 1, 44–68CrossRefGoogle Scholar
  21. Croke, E. J., and Booras, S. G. (1970). Design of an air pollution incident control plan. J. Air Pollut. Control Assoc., 20, 129–38CrossRefGoogle Scholar
  22. Croke, E. J., and Roberts, J. J. (1971). Chicago air pollution systems analysis programme. Argonne Natl Lab., Final Rep., No. ANL/ES-CC-009, 393 pp.Google Scholar
  23. Dickerson, J. E. (1961). Technical progress report, vol. II, air quality of Los Angeles county. Los Angeles Air Pollut. Control Dist., Los Angeles, Calif, Rep.Google Scholar
  24. Dixon, R. (1969). Orthogonal polynomials as a basis for objective analysis. Meteorol. Off, Sci. Paper, No. 30, HM Stationery Off., London, 20 pp.Google Scholar
  25. Edwards, H. W., and Wheat, H. G. (1978). Seasonal trends in Denver lead concentrations. Env. Sci. Techn., 12, 687–92CrossRefGoogle Scholar
  26. Eriksson, B. (1966). Simple methods for statistical prognosis. World Meteorol. Organ., Tech. Note, No. 71, pp. 86–114Google Scholar
  27. Evelyn, J. (1661). Fumifugium (ed. J. P. Lodge) (reprinted by Maxwell Reprint Co., Elmsword, New York )Google Scholar
  28. Fukuoko, Y. (1973). Meteorological study of air pollution, 1, the general and specific cycles for air pollution. Fac. Educ., Fukushima Univ., Sci. Rep., 23, 51–61Google Scholar
  29. Gajzago, L. (1964). Variation in the sulphur dioxide content of the air as a function of weather conditions. Idöjaras, 2, 103–10 (in Hungarian)Google Scholar
  30. Grissolet, H., and Pelletier, J. (1957). La pollution atmosphérique au centre de Paris et ses relations avec quelques facteurs climatologiques. La Météorologie, p. 393 (in French)Google Scholar
  31. Gronskei, K. E. (1973). Comparison between a physical dispersion model and a statistical model for ambient sulphur dioxide concentration in Oslo. Proc.3rd Clean Air Congr., Düsseldorf, 8 to 12 October 1973, VDI-Verlag, Düsseldorf, pp. B3 — B6Google Scholar
  32. Hald, A. (1952). Statistical Theory with Engineering Applications, Wiley, New York, London, 784 pp.Google Scholar
  33. Henderson, R. (1924). Method of graduation. Actuarial Soc. Am., 25, 29–39, 292–307Google Scholar
  34. Holzworth, G. C. (1969). Large-scale weather influences on community air pollution potential in the United States. J. Air Pollut. Control Assoc., 19, 248–54CrossRefGoogle Scholar
  35. Holzworth, G. C. (1973). Variations of meteorology, pollutant emissions and air quality. Proc. 2nd Joint Conf Sensing Environ. Pollutants, Washington, D.C., 10 to 12 December 1973, Instrum. Soc. Am., Pittsburgh, Pa (Reprinted in Instrum. Soc. Am., Publ., No. ISA JSP 6701, pp. 247–55 )Google Scholar
  36. Hoschele, K. (1965). Ergebnisse von Messungen des Schwefeldioxidgehalts des Luft in Karlsruhe und ihre statistische Bedeutung. Staub, 25, 102–12 (in German)Google Scholar
  37. Iikura, Y., Yasuoka, Y., and Naito, M. (1977). Pattern model for prediction of regional distribution. Proc. IFAC Symp., Kyoto, pp. 389–93Google Scholar
  38. Ives, J. E., Britten, R. H., Armstrong, D. W., Gill, W. A., and Goldmann, F. H. (1936). Atmospheric pollution in American cities for the years 1931 to 1932. US Public Health Bull., No. 224Google Scholar
  39. Jenkins, G. M. (1961). General considerations in the analysis of spectra. Technometrics, 3, 133–90CrossRefGoogle Scholar
  40. Kalpasanov, J., and Kurtschatova, G. (1975). A regression model for investigating the influence of some meteorological factors on the pollution in Sofia by sulphur dioxide. Z. Gesamte Hyg. Ihre Grenzgeb., 21, 212–14Google Scholar
  41. Kanno, S., Fukui, S., Ikeda, H., and Ono, Y. (1959). Atmospheric sulphur dioxide concentrations observed in Keihin industrial centre and their relation to meteorological elements. Int. J. Air Pollut., 1, 234–40Google Scholar
  42. Kasparzycki, A. (1973). Local statistical model of the air pollution forecasting. Idöjaras, 77, 296–303Google Scholar
  43. Kazuyuki, A. (1973). Spectrum analysis of air pollutant concentration. J. Jpn. Soc. Air Pollut., 8, 287 (in Japanese)Google Scholar
  44. Kentaro, I. (1969). Relationship between sulphur dioxide concentration and meteorological condition in the Mizushima district, report I, relationship between sulphur dioxide concentration and wind direction, wind velocity and atmospheric stability. J. Okayama Med. Soc., 81, 127–34 (in Japanese)Google Scholar
  45. Kiyoshige, S., Otaki, A., and Okamoto, S. (1971). Studies on the prediction of air pollution concentration, II, relationship between pollutant concentration and meteorological factors. Bull. Sci. Eng. Res. Lab., Waseda Univ., 54, 60–2 (in Japanese)Google Scholar
  46. Kiyoshige, S., Otaki, A., Okamoto, S., Yamane, J., and Hiroo, J. (1972). Studies on the prediction of air pollutant concentration, III, geographical differentials of statistical forecasting. Proc. 13th Symp. Jpn. Soc. Air Pollut., Paper, No. 242, p. 288 (in Japanese)Google Scholar
  47. Klein, F., Motsch, P., Ranty, A., Boury, B., and Filler, J. C. (1974). Une application de l’analyse statistique multidimensionelle au traitement des données en pollution atmosphérique. Proc. 11th Int. Colloq. Polluted Atmos., Paris, 8 to 10 June 1974, Inst. Nat. Rech. Chim. Appl., Vert–le–Petit, pp. 9–1–9–10Google Scholar
  48. Kleinman, M. T., Bernstein, D., and Kneip, T. J. (1977). An apparent effect of the oil embargo on total suspended particulate matter and vanadium in New York city air. J. Air Pollut. Control Assoc., 27, 65–7CrossRefGoogle Scholar
  49. Kleinman, M. T., Kneip, T. J., and Eisenbud, M. (1976). Seasonal patterns of airborne particulate concentrations in New York City. Atmos. Environ., 10, 9–11CrossRefGoogle Scholar
  50. Kolar, J. (1967). Der Einfluss der meteorologischen Grössen auf die Schwefeldioxid-Immission in Städten. Wärme, 73, 72–8 (in German)Google Scholar
  51. Kuniko, K., Mitsuru, U., Saburu, F., and Hisayi, Y. (1972). Studies on concentration of sulphur dioxide classified by direction and velocity of the wind in Tokyo. Tokyo Metropolitan Res. Inst. Environ. Prot., Annu. Rep., 3, 33–39 (in Japanese)Google Scholar
  52. Kunio, T., and Namoto, S. (1970). Forecasting method of sulphur dioxide by multiple regression equations developed by screening procedure. J. Jpn. Soc. Air Pollut., 5, 216 (in Japanese)Google Scholar
  53. Kutzbach, J. E. (1967). Empirical eigenvectors of sea-level pressure, surface temperature and precipitation complexes over North America. J. Appl. Meteorol., 6, 791–802CrossRefGoogle Scholar
  54. Levinson, N. (1949). A heuristic exposition of Wiener’s mathematical theory of prediction and filtering. Extrapolation, Interpolation and Smoothing of Stationary Time Series (by N. Wiener), Mass. Inst. Technol. Press, Cambridge, Mass., appendix CGoogle Scholar
  55. Loewenstein, J. C. (1973). Influence séparée du climat et des émissions de polluants sur l’évolution des taux quotidiens d’acidité et des fumées dans l’agglomération parisienne entre 1962 et 1972. Proc. 3rd Int. Clean Air Congr., Düsseldorf, 8 to 12 October 1973 VDI-Verlag, Düsseldorf, pp. B79—B84Google Scholar
  56. Lomaya, O. V. (1974). An attempt at using the statistical method of meteorological forecasting of urban air pollution. Soobsch. Akad. Nauk Gruz. SSR, 75, 81–4 (in Russian)Google Scholar
  57. Lomaya, O. V., and Tsintsadze, D. G. (1974). Analysis of the diurnal course of air pollution. Soobsch. Akad. Nauk Gruz. SSR, 73, 329–32Google Scholar
  58. McCollister, G. M., and Wilson, K. R. (1975). Linear stochastic models for forecasting daily maxima and hourly concentrations of air pollutants. Atmos. Environ., 9, 417–23CrossRefGoogle Scholar
  59. Marsh, K. J., and Foster, M. D. (1967). An experimental study of the dispersion of the emissions from chimneys on Reading, I, the study of long-term average concentrations of sulphur dioxide. Atmos. Environ., 1, 527–50CrossRefGoogle Scholar
  60. Marsh, K. J., and Withers, V. R. (1969). An experimental study of the dispersion of the emissions from chimneys in Reading, III, the investigation of the dispersion calculations. Atmos. Environ., 3, 281–302CrossRefGoogle Scholar
  61. Mateer, C. L. (1961). Note on the effect of the weekly cycle of air pollution on solar radiation in Toronto. Int. J. Air Water Pollut., 4, 52–4Google Scholar
  62. Mattioli, F. (1977). Spectral analysis of wind and sulphur dioxide concentration in the Venice area. Atmos. Environ., 11, 113–22CrossRefGoogle Scholar
  63. Mattis, R. P., and Babcock, L. R., Jr. (1973). Relationship between meteorological and ambient air quality parameters: estimation of measured pollution levels. Proc.74th Meet. Am. Inst. Chem. Eng., New Orleans, La, 14 March 1973, 22 pGoogle Scholar
  64. Merino, M. M. (1975). Simulacion y prediccion de fenomenos de contamination atmosferica mediante, modelos matematicos estadisticos. Madrid Univ., Thesis, 158 pp. (in Spanish)Google Scholar
  65. Merino, M. M., De Pedro, M. T., Morales, F. M., and Gil, F. E. (1973). Mathematical model for air pollution forecasting. Proc. 3rd Int. Clean Air Congr., Düsseldorf 8 to 12 October 1973, VDI-Verlag, Düsseldorf, pp. B59 - B65Google Scholar
  66. Merz, P. H., Painter, L. J., and Ryason, P. R. (1972). Aerometric data analysis—time series analysis and forecast and atmospheric smog diagram. A tmos. Environ., 6, 319–42Google Scholar
  67. Miller, M. D. (1949). Elements of Graduation, Actuarial Soc. Am. Inst. Actuaries, Philadelphia, PaGoogle Scholar
  68. Miller, R. G. (1966). Advanced topics of statistical prediction in meteorology, World Meteorol. Organ., Tech. Note, No. 71, pp. 115–33Google Scholar
  69. Moses, H. (1969). Mathematical urban air pollution models. Argonne Natl Lab., Rep., No. ANL/ES-RPY-001, 6 pp.Google Scholar
  70. Moses, H. (1970). Tabulation techniques. Proc. Symp. Multiple source Urban DiJJùsion Models (ed. A. Stern) US Environ. Prot. Agency, Publ., No. AP-86, pp. 14–13–14–15Google Scholar
  71. Munn, R. E., and Katz, M. (1959). Daily and seasonal pollution cycles in the Detroit-Windsor area. Int. J. Air Pollut., 2, 51–76Google Scholar
  72. Munn, R. E., and Ross, C. R. (1961). Analysis of smoke observations at Ottawa, Canada. J. Air Pollut. Control Assoc., 11, 410CrossRefGoogle Scholar
  73. Nicholson, D. L., and Marple, M. L. (1975). A pollution forecasting algorithm based on Bayesian statistical methods. Proc. 68th Annu. Meet. Air Pollut. Control Assoc„ Boston, Mass., 15 to 20 June 1975, Paper, No. 75–51. 7Google Scholar
  74. Nochumson, D. H. (1977). Explaining spatial variation of atmospheric sulphur dioxides. Proc. 70th Annu. Meet. Air Pollut. Control Assoc., Toronto, 20 to 24 June 1977, Paper, No. 77–50. 3, 24 pp.Google Scholar
  75. Okamoto, S., Shiozawa, K., and Ootaki, A. (1971). Studies on the prediction of air pollutant concentration, I, time series analysis of air pollutant concentration. J. Jpn. Soc. Air Pollut., 6, 243 (in Japanese)Google Scholar
  76. Ootaki, A., Shiozawa, K., and Okamoto, S. (1975). Statistical prediction of air pollutant concentration, I. J. Jpn. Soc. Air Pollut. 9, 544; II. J. Jpn. Soc. Air Pollut. 9,556; III. J. Jpn. Soc. Air Pollut. 9, 567; IV. Proc. Spring Meet. Jpn. Meteorol. Soc., 21 to 23 May 1975Google Scholar
  77. Ootaki, A., Shiozawa, K., Okamoto, S., Yamane, J. and Hiroo, J. (1973). Studies on the prediction of air pollutant concentration, IV, a time change prediction model. Proc. 14th Meet. Jpn. Soc. Air Pollut., Fukushima, 6 to 8 November 1973, Paper, No. 52Google Scholar
  78. Padmanabhamurty, B. (1975). Eigenvectors of sulphur dioxide in metropolitan Toronto and their association with meteorological parameters. Atmos. Environ., 9, 365–6CrossRefGoogle Scholar
  79. Panofsky, H. A., and Brier, G. W. (1968). Some applications of statistics to meteorology. Pennsylvania State Univ., Univ. Park, Pa, Publ., 224 pp.Google Scholar
  80. Peterson, J. T. (1970). Distribution of sulphur dioxide over metropolitan St Louis as described by empirical eigenvectors, and its relaticn to meteorological parameters. Atmos. Environ., 4, 501–18CrossRefGoogle Scholar
  81. Peterson, J. T. (1972). Calculations of sulphur dioxide concentrations over metropolitan St Louis. Atmos. Environ., 6, 433–42CrossRefGoogle Scholar
  82. Popovics, M. (1973). Up-to-date interpretation of urban air quality data. Idöjaras, 77, 338–48 (in Hungarian)Google Scholar
  83. Porch, W. M., and Ellsaesser, H. W. (1977). Cyclic trends in Los Angeles fine particulates. J. Air Pollut. Control Assoc., 27, 134–7CrossRefGoogle Scholar
  84. Riehl, H., Frattesi, G., and Haug, H. (1974). Particulate pollution in Berlin during stagnant weather situations in summer. Beitr. Phys. Atmos., 47, 248–60Google Scholar
  85. Sabaton, C. (1976). Application des méthodes d’analyse des données à l’optimisation d’un réseau de contrôle de la pollution atmosphérique. Univ. Paris VI Thesis (in French) (reprinted in Bull. Dir. Etudes Rech., Sér. A, No. 4, Electricite de France, Chatou, 136 pp.)Google Scholar
  86. Saltzman, B. E. (1972). Fourier analysis of air monitoring data. Proc. Symp. Stat. Aspects Air Quality Data, Chapel Hill, N.C., 9 to 10 November 1972, US Environ. Prot. Agency, Publ., No. EPA–650/4–74–038, pp. 11–1–11–12Google Scholar
  87. Sandberg, J. S., Robinson, L. H., and Demandel, R. E. (1976). Box—Jenkins stochastic modelling in regional forecasting of photochemical oxidant. Proc. 3rd Symp. Atmos. Turbulence, Diffusion Air Quality, Raleigh, N.C., 19 to 22 October 1976, Am. Meteorol. Soc., Boston, Mass., pp. 389–96Google Scholar
  88. Saxena, U., and Tsao, K. (1971). New methods to forecast air pollution concentrations. Am. Soc. Mech. Eng., Paper, No. 71WA/APC-1Google Scholar
  89. Schmidt, F. H. (1961). Air pollution studies in the Netherlands. Proc. Symp. Air Over Cities, Cincinnati, Ohio, 6 to 7 November 1961, Robert A. Taft Sanitary Eng. Cent., No. A62–5, pp. 23–9Google Scholar
  90. Sellers, W. D. (1968). Climatology of monthly precipitation patterns in the western United States, 1931 to 1966. Mon. Weather Rev., 96, 585–95CrossRefGoogle Scholar
  91. Senshu, T. (1977). Prediction of the air pollution potential in the industrial areas. Proc. 4th Int. Clean Air Congr., Tokyo, 16 to 20 May 1977, pp. 146–9Google Scholar
  92. Shabad, L. I., and Dikun, P. P. (1959). Contamination of Atmospheric Air by Carcinogenic Substances, Medgiznarodna Kniga, Leningrad (in Russian)Google Scholar
  93. Shiozawa, K., Ootaki, A., and Okamoto, S. (1972). Study on the precipitation of sulphur dioxide concentration based on meteorological factors. Mem. School Sci. Eng., Waseda Univ., 36, 57–75(in Japanese)Google Scholar
  94. Shiozawa, K., Okamoto, S. and Ootaki, A. (1975). Statistical prediction modelling for regional air pollution prevention. Proc. 68th Annu. Meet. Air Pollut. Control Assoc., Boston, Mass., 15 to 20 June 1975, Paper, No. 75–53. 4, 16 pp.Google Scholar
  95. Smith, F. B., and Jeffrey, G. H. (1972). The prediction of high concentrations of sulphur dioxide in London and Manchester air. Proc. Symp. Stat. Aspects Air Quality Data, Chapel Hill, N.C., 9 to 10 November 1972, US Environ. Prot. Agency, Publ., No. EPA–650/4–74–038, pp. 12–1–12–29Google Scholar
  96. Son’kin, L. R., Razbegaeva, E. A., and Terekhova, K. M. (1966). The problem of the meteorological factors determining the air pollution in towns. Tr. Gl. Geofiz. Obs., No. 185 (in Russian)Google Scholar
  97. Spirtas, R., and Levin, H. J. (1971). Patterns and trends in levels of suspended particulate matter. J. Air Pollut. Control Assoc., 21, 329–33CrossRefGoogle Scholar
  98. Spitaler, A. (1972). Zur Analyse der Zeitserien am Beispiel von CO2 Registrierungen. Univ. Vienna, Thesis, 124 pp. (in German)Google Scholar
  99. Stidd, C. K. (1967). The use of eigenvectors for climatic estimates. J. Appl. Meteorol., 6, 255–64CrossRefGoogle Scholar
  100. Summers, P. W. (1966). The seasonal, weekly and daily cycles of atmospheric smoke content in central Montreal. J. Air Pollut. Control Assoc., 16, 432–8CrossRefGoogle Scholar
  101. Takeichiro, T., Hiroaka, M., Ikeda, Y., and Kitada, T. (1970). Mathematical model for concentration of air pollution. J. Jpn. Soc. Air Pollut., 5, 119 (in Japanese)Google Scholar
  102. Tiao, G. C., Box, G. E. P., Grupe, M., Liu, S. T., Hillmer, S., Wei, W., and Hamming, W. J. (1973a). Los Angeles aerometric ozone data 1955 to 1972. Dep. Stat., Univ. Wisc., Madison, Wise., Tech. Rep., No. 346, 13 pp. tablesGoogle Scholar
  103. Tiao, G. C., Box, G. E. P., and Hamming, W. J. (1973b). Analysis of Los Angeles photochemical smog data: a statistical overview. Dept. Stat., Univ. Wisc., Madison, Wisc., Tech. Rep., No. 331, 15 pp. + tablesGoogle Scholar
  104. Tiao, G. C. (1974). A statistical analysis of the Los Angeles ambient carbon monoxide data.Dep. Stat., Univ. Wisc., Madison, Wisc., Tech. Rep., No. 365, 14 pp. + tablesGoogle Scholar
  105. Tiao, G. C.(1975). A statistical analysis of the Los Angeles ambient carbon monoxide data 1955 to 1972. J. Air Pollut. Control Assoc., 25, 1129–36CrossRefGoogle Scholar
  106. Tilley, M. A., and McBean, G. A. (1973). An application of spectrum analysis to synoptic-pollution data. Atmos. Environ., 7, 793–801CrossRefGoogle Scholar
  107. Tomson, N. M. (1959). Sanitary Protection of Atmospheric Air from Pollution, Medgiznarodna Kniga, Leningrad (in Russian)Google Scholar
  108. Tsuyi, K., and Tonomura, M. (1970). Observation of air pollution with the aid of continuous analysers, III, correlation between the concentration of various kinds of pollutants in the atmosphere and wind direction and velocity at Kasumigaseki, central district of Tokyo. Bull. Natl. Inst. Hyg. Sci., Tokyo, 88, 30–6 (in Japanese)Google Scholar
  109. Tsuyoshi, Y. (1970). The diurnal variation of the pollutant concentration in an urban area. J. Jpn. Soc. Air Pollut., 5, 113 (in Japanese)Google Scholar
  110. Tukey, J. W. (1949). The sampling theory of power spectrum estimates. Proc. Symp.Appl. Autocorrelation Anal. Phys. Problems, Woods Hole, Mass., 13 to 14 June 1949, US Off. Naval Res., Publ., No. ONR NAVEXOS P-735, pp. 47–68Google Scholar
  111. Turner, D. B. (1961). Relationships between 24-h mean quality measurements and meteorological factors in Nashville, Tennessee. J. Air Pollut. Control Assoc., 11, 483–9CrossRefGoogle Scholar
  112. Turner, D. B. (1964). A diffusion model for an urban area. J. Appl. Meteorol., 3, 83–91CrossRefGoogle Scholar
  113. United States National Air Pollution Control Administration (1969a). Continuous air-monitoring projects in Philadelphia 1962 to 1965. US Natl Air Pollut. Control Admin., Publ., No. APTD 69–14, 364 pp.Google Scholar
  114. United States National Air Pollution Control Administration (1969b). 1968 data tabulation summaries, Cincinnati continuous air-monitoring projects. US Nat! Air Pollut. Control Admin., Publ., No. APTD 69–16Google Scholar
  115. United States National Air Pollution Control Administration (1970). Air quality criteria for photochemical oxidants. US Natl Air Pollut.Control Admin., Publ., No AP-63Google Scholar
  116. United States National Air Pollution Control Administration (1971). Air quality criteria for nitrogen oxides. US Natl Air Pollut. Control Admin., Publ., No. AP-84Google Scholar
  117. Weisman, B., Matheson, D. H., and Hirt, M. (1969). Air pollution survey for Hamilton, Ontario. Atmos. Environ., 3, 11–23CrossRefGoogle Scholar
  118. Wiener, N. (1930). Generalised harmonic analysis. Acta Math., 55, 117–258CrossRefGoogle Scholar
  119. Wiener, N. (1949). Extrapolation, Interpolation and Smoothing of Stationary Time Series,Mass. Inst. Technol. Press, Cambridge, Mass., 163 pp.Google Scholar
  120. World Meteorological Organisation (1966). Statistical analysis and prognosis in meteorology. World Meteorol. Organ., Tech. Note, No. 71, 197 pp.Google Scholar
  121. Yuko, I., Hiraoka, M., and Todaka, H. (1972). Prediction of urban scale air pollution. Trans. Jpn. Soc. Civil Eng., 204 pp. (in Japanese)Google Scholar
  122. Yule, G. U. (1926). Why do we sometimes get nonsense correlations between time series? J. R. Stat. Soc., 89, 1–64CrossRefGoogle Scholar

Copyright information

© Michel M. Benarie 1980

Authors and Affiliations

  • Michel M. Benarie
    • 1
  1. 1.Institut National de Recherche Chimique AppliquéeVert-le-PetitFrance

Personalised recommendations