Advertisement

The hypothalamus as an endocrine target organ

  • L. Martini

Abstract

The concept that the brain may be a target for hormone action originated with the pioneer studies of Berthold, who, in 1849, reported the striking changes in aggressive and sexual behaviour occurring in cockerels after castration and concluded that testicular secretions may influence the brain.

Keywords

Anterior Pituitary Gonadotrophin Secretion Male Sexual Behaviour Anterior Pituitary Function Elsevier Scientific Publishing Company 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agmo, A. and Sodersten, P. (1975). Sexual behaviour in castrated rabbits treated with testosterone, oestradiol, dihydrotestosterone or oestradiol in combination with dihydrotestostcrone. J. Endocr., 67, 327–332PubMedCrossRefGoogle Scholar
  2. Alsum, P. and Goy, R. W. (1974). Action of esters of testosterone, dihydrotestosterone or oestradiol on sexual behaviour in castrated male guinea-pigs. Hormones Behay., 5, 207–217CrossRefGoogle Scholar
  3. Armstrong, E. G., Jr. and Villee, C. A. (1977). Characterisation and comparison of oestrogen and androgen receptors of calf anterior pituitary. J. Steroid Biochem., 8, 285–292PubMedCrossRefGoogle Scholar
  4. Atger, M., Baulieu, E. E. and Milgrom, E. (1974). An investigation of progesterone receptors in guinea-pig vagina, uterine cervix, mammary glands, pituitary and hypothalamus. Endocrinology, 94, 161–167PubMedCrossRefGoogle Scholar
  5. Ball, F., Knuppen, R., Haupt, M. and Breuer, H. (1972). Interaction between oestrogens and catecholamines. III. Studies on the methylation of catecholestrogens, catecholamines and other catechols by the catechol-o-methyltransferase of human liver. J. Clin. Endocr. Metab., 34 736–746PubMedCrossRefGoogle Scholar
  6. Barley, J., Ginsburg, M., MacLusky, N. Y., Morris, I. D. and Thomas, P. J. (1977). Sex differences in the distribution of cytoplasmic oestrogen receptors in rat brain and pituitary: effects of gonadectomy and neonatal androgen treatment. Brain Res., 309–318Google Scholar
  7. Barraclough, C. A. (1967). Modifications in reproductive function after exposure to hormones during the prenatal and early postnatal period. In L. Martini and W. F. Ganong (eds.). Neuroendocrinology, Vol. 2, Academic Press, New York, 61–99CrossRefGoogle Scholar
  8. Berthold, A. A. (1849). Transplantation of the testes. Arch. Anat. Physiol. Wiss. Med, 16, 42–46Google Scholar
  9. Beyer, C. (1976). Neuroendocrine mechanisms in sexual behaviour. In F. Naftolin, K. Y. Ryan and I. Y. Davies (eds.). Subcellular Mechanisms in Reproductive Neuroendocrinology. Elsevier Scientific Publishing Company, Amsterdam, 471–485Google Scholar
  10. Beyer, C., Larsson, K., Perez-Palacios, G. and Morali, G. (1973). Androgen structure and male sexual behaviour in the castrated rat. Hormones Behay., 4, 99–108CrossRefGoogle Scholar
  11. Bolt, H. M. and Kappus, H. (1976). Interaction by 2-hydroxyestrogens with enzymes of drug metabolism. J. Steroid Biochem., 7, 311–313PubMedCrossRefGoogle Scholar
  12. Bosley, C. G. and Leavitt, W. W. (1972). Specificity of progesterone action during the preovulatory period in the cyclic hamster. Fed. Proc., 31, 257–258Google Scholar
  13. Celotti, F., Farina, J., Cresti, L., Massa, R. and Martini, L. (1976). 5alpha-reductase activity (5alpha-R) in rat pituitary homografts under the kidney capsule. Program 5th Intern. Congr. Endocr., Excerpta Medica, Amsterdam, 44–45Google Scholar
  14. Celotti, F., Massa, R. and Martini, L. (1978). Metabolism of sex steroids in the central nervous system. In L. J. De Groot (ed.). Metabolic Basis of Endocrinology. Grune and Stratton, New York, to be publishedGoogle Scholar
  15. Cheng, Y. J. and Karavolas, H. J. (1975). Properties and subcellular distribution of A4-steroid (progesterone) 5alpha-reductase in rat anterior pituitary. Steroids, 26, 57–72PubMedCrossRefGoogle Scholar
  16. Christiansen, L. W. and Clemens, L. G. (1974). Intrahypothalamic implants of testosterone or oestradiol and resumption of masculine sexual behaviour in long-term castrated male rats. Endocrinology, 95, 984–990CrossRefGoogle Scholar
  17. Cresti, L. and Massa, R. (1976). Metabolism of androgens in various testosterone-dependent tissues. Program 5th Intern. Congr. Endocr., Excerpta Medica, Amsterdam, 46–47Google Scholar
  18. Czaja, J. A., Goldfoot, D. A. and Karavolas, H. J. (1974). Comparative facilitation and inhibition of lordosis in the guinea-pig with progesterone, 5alpha-pregnane 3.20-dione or 3alphahydroxy-5alpha-pregnan-20-one. Hormones Behay., 5, 261–274CrossRefGoogle Scholar
  19. David, M. A., Fraschini, F. and Martini, L. (1965). Parallélisme entre le contenu hypophysaire en FSH et le contenu hypothalmique en FSH-RF (FSH-releasing factor). C. R. Acad Sci., 261, 2249–2251Google Scholar
  20. Davies, I. J., Naftolin, F. and Ryan, K. J. (. 1975 ). The affinity of catechol for oestrogen receptors in the pituitary and anterior hypothalamus of the rat. Endocrinology, 97, 554–557PubMedCrossRefGoogle Scholar
  21. Denef, C., Magnus, C. and McEwen, B. S. (1973). Sex differences and hormonal control of testosterone metabolism in rat pituitary and brain. J. Endocr., 59, 605–621PubMedCrossRefGoogle Scholar
  22. Döcke, F. and Dörner, G. (1975). Anovulation in adult female rats after neonatal intracerebral implantation of oestrogen. Endokrinologie, 65, 375–377PubMedGoogle Scholar
  23. Doughty, C., Booth, J. E., McDonald, P. G. and Parrott, R. F. (1975). Inhibition, by the antioestrogen MER-25, of the defeminization induced by the synthetic oestrogen RU 2858. J. Endocr., 67, 459–460PubMedCrossRefGoogle Scholar
  24. Eik-Nes, K. B. (1975). Production and secretion of 5alpha-reduced testosterone (DHT) by male reproductive organs. J. Steroid Biochem., 6, 337–339PubMedCrossRefGoogle Scholar
  25. Feder, H. H., Naftolin, F. and Ryan, K. J. (1974). Male and female sexual responses in male rats given estradiol benzoate and 5alpha-androstan-17beta-o1–3-one propionate. Endocrinology, 94, 136–141PubMedCrossRefGoogle Scholar
  26. Fishman, J. (1976). Estrogen metabolism by neuroendocrine tissues. In F. Naftolin, K. J. Ryan and I. J. Davies (eds.). Subcellular Mechanisms in Reproductive Neuroendocrinology. Elsevier Scientific Publishing Company, Amsterdam, 357–362Google Scholar
  27. Fishman, J., Naftolin, F., Davies, I. J., Ryan, K. J. and Petro, Z. (1976). Catecholestrogen formation by the human foetal brain and pituitary. J. Clin. Endocr. Metab., 42, 177–180PubMedCrossRefGoogle Scholar
  28. Fishman, J. and Norton, B. (1975). Catecholestrogen formation in the central nervous system of the rat. Endocrinology, 96, 1054–1058PubMedCrossRefGoogle Scholar
  29. Flores, F., Naftolin, F., Ryan, K. J. and White, R. J. (1973). Estrogen formation by the isolated perfusal Rhesus monkey brain. Science, 180, 1074–1075PubMedCrossRefGoogle Scholar
  30. Fox, T. O. (1977). Estradiol and testosterone binding in normal and mutant mouse cerebellum: biochemical and cellular specificity. Brain Res., 128, 263–273PubMedCrossRefGoogle Scholar
  31. Fuxe, K. and Hökfelt, T. (1969). Catecholamines in the hypothalmus and in the pituitary gland. In W. F. Ganong and L. Martini (eds.). Frontiers in Neuroendocrinology, Vol. 1, Oxford University Press, New York, 47–96Google Scholar
  32. Ginsburg, M., Greenstein, B. D., MacLusky, N. J., Morris, I. D. and Thomas, P. J. (1971). Dihydrotestosterone binding in brain and pituitary cytosol of rats. J. Endocr., 61, XXIVGoogle Scholar
  33. Gordon, S., Cantrall, E. W., Cekleniak, W. P., Albers, H. J., Mauer, S., Stolar, S. M. and Bernstein, S. (1964). Steroid and lipid metabolism. The hypocholesteremic effect of estrogen metabolites. Steroids, 4, 267–271CrossRefGoogle Scholar
  34. Gorski, R. A. (1963). Modification of ovulatory mechanisms by postnatal administration of estrogen to the rat. Amer. J. Physiol., 205, 842–844PubMedGoogle Scholar
  35. Gorski, R. A. (1971). Gonadal hormones and the perinatal development of neuroendocrine function. In L. Martini and W. F. Ganong (eds.). Frontiers in Neuroendocrinology, Vol. 2. Oxford University Press, New York, 237–290Google Scholar
  36. Gorzalka, B. B. and Whalen, R. E. (1974). Genetic regulation of hormone action: selective effects of progesterone and dihydroprogesterone (5-alpha-pregnane-3, 20-dione) on sexual receptivity in mice. Steroids, 23, 499–505PubMedCrossRefGoogle Scholar
  37. Goy, R. W. and Resko, J. A. (1972). Gonadal hormones and behaviour of normal and pseudohermaphroditic non-human female primates. Recent Progr. Hormone Res., 28, 707–733PubMedGoogle Scholar
  38. Iramain, C. A., Danzo, B. J., Stratt, C. A. and Toft, D. O. (1973). Program 4th Intern. Congr. Soc. Psychoneuroendocrinology, p. 5.Google Scholar
  39. Jenkin, G., Henville, A. and Heap, R. B. (1975). Metabolism of oestrone sulphate and binding by the brain and pituitary of foetal and adult sheep. J. Endocr., 64, 22–23 PGoogle Scholar
  40. Jensen, E. V. and de Sombre, E. R. (1973). Estrogen-receptor interaction. Science, 182, 126–134PubMedCrossRefGoogle Scholar
  41. Jouan, P., Samperez, S. and Thieulant, M. L. (1973). Testosterone ‘receptors’ in purified nuclei of rat anterior hypophysis. J. Steroid Biochem., 4, 65–74PubMedCrossRefGoogle Scholar
  42. Juneja, H. S., Motta, M., Massa, R., Zanisi, M. and Martini, L. (1976). Feedback control of gonadotropin secretion in the male. In P. O. Hubinont and M. L’Hermite (eds.). Sperm Action, Karger, Basel, 162–173Google Scholar
  43. Karavolas, H. J., Hodges, D. and O’Brien, D. (1976). Uptake of 3H-progesterone and 3H-5alpha-dihydroprogesterone by rat tissues in vivo and analysis of accumulated radioactivity: accumulation of 5-alpha-dihydroprogesterone by pituitary and hypothalamic tissues. Endocrinology, 98, 164–175PubMedCrossRefGoogle Scholar
  44. Karavolas, H. J. and Nuti, K. M (1976). Progesterone metabolism by neuroendocrine tissues. In F. Naftolin, K. J. Ryan and I. J. Davies (eds.). Subcellular Mechanisms in Reproductive Neuroendocrinology, Elsevier Scientific Publishing Company, Amsterdam, 305–326Google Scholar
  45. Kato, J. (1975). The’ role of hypothalamic and hypophyseal 5-alpha-dihydrotestosterone, estradiol and progesterone receptors in the mechanism of feedback action. J. Steroid Biochem., 6, 979–987PubMedCrossRefGoogle Scholar
  46. Kato, J. (1976). Cytosol and nuclear receptors for 5-alpha-dihydrotestosterone and testosterone in the hypothalamus and hypophysis, and testosterone receptors isolated from neonatal female rat hypothalamus. J. Steroid Biochem.. 7. 1179–1187PubMedCrossRefGoogle Scholar
  47. Kato, J. and Onouchi, T. (1977). Specific progesterone receptors in the hypothalamus and anterior hypophysis of the rat. Endocrinology, 101, 920–928PubMedCrossRefGoogle Scholar
  48. Kawahara, F. S., Berman, M. L. and Green, O. C. (1975). Conversion of progesterone [1–2–3H] to 5–beta–pregnane–3. 20–dione by brain tissue. Steroids, 25, 459 – 463PubMedCrossRefGoogle Scholar
  49. Kazama, N. and Longcope, C. (1974). In vivo studies on the metabolism of estrone and estradiol-17-beta by the brain. Steroids, 23, 469–481Google Scholar
  50. Keefer, D. A., Stumpf, W. E. and Sar, M. (1973). Estrogen-topographical localisation of estrogen-concentrating cells in the rat spinal cord following 3H-estradiol administration. Proc. Soc. exp. Biol., Med., 143, 414–417CrossRefGoogle Scholar
  51. Kishimoto, Y. (1973). Estrone sulphate in rat brain: uptake from blood and metabolism in vivo. J. Neurochem., 20, 1489–1492PubMedCrossRefGoogle Scholar
  52. Kniewald, Z., Massa, R. and Martini, L. (1971). Conversion of testosterone into 5-alpha androstan-17-beta-o1–3-one at the anterior pituitary and hypothalamic level. In V. H. T. James and L. Martini (eds.). Hormonal Steroids, Excerpta Medica, Amsterdam, 784–791Google Scholar
  53. Krieger, M. S., Morrell, J. I. and Pfaff, D. W. (1976). Autoradiographic localisation of estradiol-concentrating cells in the female hamster brain. Neuroendocrinology, 22, 193–205PubMedCrossRefGoogle Scholar
  54. Kulin, H. E. and Reiter, E. O. (1972). Gonadotrophin suppression by low-dose estrogen in men: evidence for differential effects upon FSH and LH. J. Clin. Endocr. Metab., 35, 836–839PubMedCrossRefGoogle Scholar
  55. Larsson, K., Sodersten, P., Beyer, C., Morali, G. and Perez-Palacios, G. (1976). Effects of estrone, estradiol and estriol combined with dihydrotestosterone on mounting and lordosis behavior in castrated male rats. Hormones Behay., 7, 379–390CrossRefGoogle Scholar
  56. Laumas, K. R. and Farooq, A. (1966). The uptake in vivo of [1, 2–3H] progesterone by the brain and genital tract of the rat. J. Endocr., 36, 95–96PubMedCrossRefGoogle Scholar
  57. Lieberburg, I., MacClusky, N. J. and McEwen, B. S. (1977). 5-alpha-dihydrotestosterone (DHT) receptors in rat brain and pituitary cell nuclei. Endocrinology, 100, 598–607Google Scholar
  58. Lieberburg, I. and McEwen, B. S. (1975). Estradiol-17-beta: a metabolite of testosterone recovered in cell nuclei from limbic areas of male adult rat brains. Brain Res., 85, 165–170PubMedCrossRefGoogle Scholar
  59. Lieberburg, I. and McEwen, B. S. (1977). Brain cell nuclear retention of testosterone metabolites, 5-alpha-dihydrotestosterone and estradiol-l7-beta in adult rats. Endocrinology, 100, 588–597PubMedCrossRefGoogle Scholar
  60. Lloyd, R. V. and Karavolas, H. J. (1975). Uptake and conversion of progesterone and testosterone to 5-alpha-reduced products by enriched gonadotropic and chromophobic rat anterior pituitary cell fractions. Endocrinology, 97, 517–526PubMedCrossRefGoogle Scholar
  61. Luttge, W. G., Hall, N. R., Wallis, C. J. and Campbell, J. C. (1975). Stimulation of male and female sexual behaviour in gonadectomised rats with estrogen and androgen therapy and its inhibition with concurrent antihormone therapy. Physiol Behay., 14, 65–73CrossRefGoogle Scholar
  62. Luttge, W. G. and Whalen, R. E. (1970). Regional localisation of estrogenic metabolites in the brain of male and female rats. Steroids, 15, 605–612PubMedCrossRefGoogle Scholar
  63. McDonald, P. G. and Doughty, C. (1972). Comparison of the effect of neonatal administration of testosterone and dihydrotestosterone in female rat. J. Reprod. Fertil, 30, 55–62PubMedCrossRefGoogle Scholar
  64. McDonald, P. G. and Doughty, C. (1974). Effect of neonatal administration of different androgens in the female rat: correlation between aromatisation and the induction of sterilisation. J. Endocr., 61, 95–103PubMedCrossRefGoogle Scholar
  65. McEwen, B. S. (1978). Distribution and binding of hormones in different CNS areas. In L. J. De Groot (ed.). Metabolic Basis of Endocrinology. Grune and Stratton, New York, to be publishedGoogle Scholar
  66. McEwen, B. S., Zigmond, R. E. and Gerlach, G. H. (1972). Sites of steroid binding and action in the brain. In G. H. Bourne (ed.). Structure and Function of Nervous Tissue, vol. 5, Academic Press, New York, 205–291Google Scholar
  67. Martini, L. (1976). Androgen reduction by neuroendocrine tissues: physiological significance. In F. Naftolin, K. J. Ryan and I. J. Davies (eds.). Subcellular Mechanisms in Reproductive Neuroendocrinology, Elsevier Scientific Publishing Company, Amsterdam, 327–345Google Scholar
  68. Martini, L. (1977). Recent views on the control of anterior pituitary function. Acta Endocr., SuppL 214, 19–32Google Scholar
  69. Martini, L., Fraschini, F. and Motta, M. (1968). Neural control of anterior pituitary functions. Recent Progr. Hormone Res., 24, 439–496PubMedGoogle Scholar
  70. Massa, R., Justo, S. and Martini, L. (1975). Conversion of testosterone into 5-alpha-reduced metabolites in the anterior pituitary and in the brain of maturing rats. J. Steroid Biochem., 6, 567–571PubMedCrossRefGoogle Scholar
  71. Massa, R., Stupnicka, E., Kniewald, Z. and Martini, L. (1972a). The transformation of testosterone into dihydrotestosterone by the brain and the anterior pituitary. J. Steroid Biochem., 3, 385–399PubMedCrossRefGoogle Scholar
  72. Massa, R., Stupnicka, E. and Martini, L. (1972b). Metabolism of progesterone in the anterior pituitary, the hypothalamus and the uterus of female rats. Program 4th Intern. Congr. Endocr., Excerpta Medica, Amsterdam, 118Google Scholar
  73. Maurer, R. A. and Woolley, D. E. (1974). Demonstration of nuclear 3H-estradiol binding in hypothalamus and amygdala of female, androgenised-female and male rats. Neuroendocrinology, 16, 137–147PubMedCrossRefGoogle Scholar
  74. Mercier, L., LeGuellec, C., Thieulant, M. L., Samperez, S. and Jouan, P. (1976). Androgen and estrogen receptors in the cytosol from male rat anterior hypophysis: further characteristics and differentiation between androgen and estrogen receptors. J. Steroid Biochem., 7, 779–785PubMedCrossRefGoogle Scholar
  75. Meyerson, B. (1972). Latency between intravenous injection of progestins and the appearance of estrus behaviour in estrogen-treated ovariectomised rats. Hormones Behay., 3, 1–9CrossRefGoogle Scholar
  76. Mickan, H. (1972). Metabolism of 4–14C-progesterone and 4–14C-testosterone in brain of the previable human fetus. Steroids, 19, 659–665PubMedCrossRefGoogle Scholar
  77. Morrell, J. I., Kelley, D. B. and Pfaff, D. W. (1975). Sex steroid binding in the brains of vertebrates. Studies with light microscopic autoradiography. In K. M. Knigge, D. E. Scott, H. Kobayashi and S. Ishii (eds.). Brain-Endocrine Interactions. Part II: The Ventricular System in Neuroendocrine Mechanisms, Karger, Basel, 230–256Google Scholar
  78. Moss, R. L. (1976). Unit responses in preoptic and arcuate neurons related to anterior pituitary function. In L. Martini and W. F. Ganong (eds.). Frontiers in Neuroendocrinology, Vol. 4, Raven Press, New York, 95–128Google Scholar
  79. Mowles, T. F., Ashkanazy, B., Mix, E., Jr. and Sheppard, H. (1971). Hypothalamic and hypophyseal estradiol-binding complexes. Endocrinology, 89, 484–491PubMedCrossRefGoogle Scholar
  80. Naess, O., Attramadal, A. and Aakvaag, A. (1975). Androgen-binding proteins in the anterior pituitary, hypothalamus, preoptic area and brain cortex of the rat. Endocrinology, 96, 1–9PubMedCrossRefGoogle Scholar
  81. Naftolin, F., Morishita, H., Davies, I. J., Todd, R. and Ryan, K. J. (1975a). 2-Hydroxyestroneinduced rise in serum luteinising hormone in the immature male rat. Biochem. Biophys. Res. Commun., 64, 905–910Google Scholar
  82. Naftolin, F., Ryan, K. J. and Davies, I. J. (1976). Androgen aromatisation by neuroendo crine tissues. In F. Naftolin, K. J. Ryan, and I. J. Davies (eds.). Subcellular Mechanisms in Reproductive Neuroendocrinology, Elsevier Scientific Publishing Company, Amsterdam, 347–355Google Scholar
  83. Naftolin, F., Ryan, K. J., Davies, I. J., Reddy, V. V., Flores, F., Petro, Z., Kuhn, M., White, R. S., Takaoka, Y. and Wolin, L. (1975b). The formation of estrogens by central neuroendocrine tissues. Recent Progr. Hormone Res., 31, 295–319PubMedGoogle Scholar
  84. Nakamura, T. and Tanabe, Y. (1975). In vitro metabolism of steroid hormones by chicken brain. Acta Endocr., 75, 410–416Google Scholar
  85. Neill, J. D. and Smith, M. S. (1974). Pituitary-ovarian inter-relationships in the rat. In V. H. T. James and L. Martini (eds.). Current Topics in Experimental Endocrinology, Vol. 2, Academic Press, New York, 73–106Google Scholar
  86. Notides, A. C. (1970). Binding affinity and specificity of the estrogen receptor of the rat uterus and anterior pituitary. Endocrinology, 87, 987–992PubMedCrossRefGoogle Scholar
  87. Nowak, F. V. and Karavolas, H. J. (1974). Conversion of 20-alpha-hydroxypregnen-4.en-3one to 20-alpha-hydroxy-5-alpha-pregnan-3-one and 5-alpha-pregnane-3-alpha, 20-alphadiol by rat medial basal hypothalamus. Endocrinology, 94, 994–997PubMedCrossRefGoogle Scholar
  88. P’an, S. V. and Laubach, G. D. (1964). Steroid central depressants. In R. I. Dorfman (ed.). Methods in Hormone Research, VoL 3, Academic Press, New York, 415–475Google Scholar
  89. Parrott, R. F. and McDonald, P. G. (1975). Sexual behavior of male rats implanted in the brain with 19-hydroxytestosterone. J. Endocr., 64, 37–38 PCrossRefGoogle Scholar
  90. Parvizi, N. and Ellendorff, F. (1975). 2-hydroxy-oestradiol-17-beta as a possible link in steroid brain interaction. Nature, 256, 59–60Google Scholar
  91. Payne, A. H., Lawrence, C. C., Foster, D. L. and Jaffe, R. B. (1973). Intranuclear binding of 17-beta-estradiol and estrone in female ovine pituitaries following incubation with estrone sulfate. J. Biol. Chem., 248, 1598–1602PubMedGoogle Scholar
  92. Pilven, A., Thieulant, M. L., Ducouret, B., Samperez, S. and Jouan, P. (1976). Rapid and intensive conversion of 5-alpha-androstane-3-alpha, 17-beta-diol into 5-alpha-dihydrotestosterone in the male rat anterior pituitary: in vivo and in vitro studies. Steroids, 28, 349359Google Scholar
  93. Piva, F., Motta, M. and Martini, L. (1978).. Long, short and ultra-short feedback loops. In L. J. De Groot (ed.). Metabolic Basis of Endocrinology. Grune and Stratton, New York, to be publishedGoogle Scholar
  94. Plapinger, L. and McEwen, B. S. (1973). Autogeny of estradiol-binding sites in rat brain. Part I: Appearance of presumptive adult receptors in cytosol and nuclei. Endocrinology, 93, 1119–1128PubMedCrossRefGoogle Scholar
  95. Raisman, G. and Field, P. M. (1971). Anatomical considerations relevant to the interpretation of neuroendocrine experiments. In L. Martini and W. F. Ganong (eds.). Frontiers in Neuroendocrinology, Vol. 2, Oxford University Press, New York, 3–44Google Scholar
  96. Raynaud, J. P., Mercier-Bodard, C. and Baulieu, E. E. (1971). Rat estradiol-binding plasma protein (EBP). Steroids, 18, 767–788PubMedCrossRefGoogle Scholar
  97. Reddy, V. V. R., Naftolin, F. and Ryan, K. J. (1973). Aromatisation in the central nervous system of rabbits: effects of castration and hormone treatment. Endocrinology, 92, 589–594PubMedCrossRefGoogle Scholar
  98. Reddy, V. V. R., Naftolin, F. and Ryan, K. J. (1974a). Steroid 17-beta-oxydoreductase activity in the rabbit central nervous system and adenohypophysis. J. Endocr., 62, 401–402PubMedCrossRefGoogle Scholar
  99. Reddy, V. V. R., Naftolin, F. and Ryan, K. J. (1974b). Conversion of androstenedione to estrone by neural tissues from fetal and neonatal rats. Endocrinology, 94, 117–121PubMedCrossRefGoogle Scholar
  100. Rommerts, F. F. G. and Van der Molen, H. J. (1971). Occurrence and localisation of 5alpha-steroid reductase, 3-alpha- and 17-beta-hydroxysteroid dehydrogenases in hypothalamus and other brain tissues of the male rat. Biochim. Biophys. Acta, 248, 489–502CrossRefGoogle Scholar
  101. Sanyal, M. K. and Todd, R. B. (1972). 5-alpha-dihydroxyprogesterone influence on ovulation of prepubertal rats. Proc. Soc. exp. Biol. Med., 141, 622–624Google Scholar
  102. Sar, M. and Stumpf, W. E. (1973a). Cellular and subcellular localisation of radioactivity in the rat pituitary after injection of 1, 2–3H-testosterone using dry-autoradiography. Endocrinology, 92, 631–635PubMedCrossRefGoogle Scholar
  103. Sar, M. and Stumpf, W. E. (1973b). Autoradiographic localisation of radioactivity in the rat brain after the injection of 1, 2–3H-testosterone. Endocrinology, 92, 251–256PubMedCrossRefGoogle Scholar
  104. Sar, M. and Stumpf, W. E. (1973c). Neurons of the hypothalamus concentrate 3H-progesterone or its metabolites. Science, 182, 1266–1268PubMedCrossRefGoogle Scholar
  105. Sar, M. and Stumpf, W. E. (1975). Distribution of androgen-concentration neurons in rat brain. In W. E. Stumpf, and L. D. Grant (eds.). Anatomical Neuroendocrinology, Karger, Basel, 120–133Google Scholar
  106. Seiki, K., Haruki, Y., Imanishi, Y. and Enomoto, T. (1977). Further evidence of presence of progesterone-binding proteins in female rat hypothalamus. Endocr. Japon., 24, 233–238CrossRefGoogle Scholar
  107. Seiki, K. and Hattori, M. (1971). A more extensive study on the uptake of labelled progesterone by the hypothalamus and pituitary gland of rats. J. Endocr., 51, 793–794PubMedCrossRefGoogle Scholar
  108. Seiki, K. and Hattori, M. (1973). In vivo uptake of progesterone by the hypothalamus and pituitary of the female ovariectomised rat and its relationship to cytoplasmic progesterone-binding protein. Endocr. Japon., 20, 111–119Google Scholar
  109. Seiki, K., Miyamoto, M., Yamashita, A. and Kottani, M. (1969). Further straies on the uptake of labelled progesterone by the hypothalamus and pituitary of rats. J..adocr., 43, 129–130PubMedCrossRefGoogle Scholar
  110. Shridharan, B. N., Meyer, R. K. and Karavolas, H. J. (1974). Effect of 5-alpha-dihydroprogest-erone, pregn-5-ene-3, 20-dione, pregnelone and related progestins on ovulation in PMSG-treated immature rats. J. Reprod. Fertil., 36, 83–90CrossRefGoogle Scholar
  111. Sodersten, P. (1973). Estrogen-activated sexual behaviour in male rats. Hormones Behay., 4, 247–256CrossRefGoogle Scholar
  112. Stewart-Bentley, M., Odell, W. D. and Horton, R. (1974). The feedback control of luteinising hormone in normal adult men. J. Clin. Endocr. Metab., 38, 545–553.PubMedCrossRefGoogle Scholar
  113. Stumpf, W. E., Sar, M. and Keefer, D. A. (1975). Atlas of estrogen target cells in rat brain. In W. E. Stumpf and L. D. Grant (eds.). Anatomical Neuroendocrinology, Karger, Basel, 104–109Google Scholar
  114. Stupnicka, E., Massa, R., Zanisi, M. and Martini, L. (1977). Role of anterior pituitary and hypothalamic metabolism of progesterone in the control of gonadotropin secretion. In P. O. Hubinont, M. l’Hermite and C. Robyn (eds.). Clinical Reproductive Neuroendocrinology, Karger, Basel, 88–95Google Scholar
  115. Swerdloff, R. S., Grover, P. K., Jacobs, H. S: and Bain, J. (1973). Search for a substance which selectively inhibits FSH-effects of steroids and prostaglandins on serum FSH and LH levels. Steroids, 21, 703–722Google Scholar
  116. Swerdloff, R. S., Walsh, M. D. and Odell, W. D. (1972). Control of LH and FSH secretion in the male: evidence that aromatisation of androgens to estradiol is not required for inhibition of gonadotropin secretion. Steroids, 20, 13–22PubMedCrossRefGoogle Scholar
  117. Tabei, T., Haga, H., Heinrichs, W. L. and Hermann, W. L. (1974). Metabolism of progesterone by rat brain, pituitary gland and other tissues. Steroids, 23, 651–666PubMedGoogle Scholar
  118. Tabei, T. and Heinrichs, W. L. (1974). Metabolism of progesterone by the brain and pituitary gland of sub-human primates. Neuroendocrinology, 15, 281–289PubMedCrossRefGoogle Scholar
  119. Verjans, H. L. and Eik-Nes, K. B. (1977). Comparisin of effects of C19 (androstene or androstane) steroids on serum gonadotrophin concentrations and on accessory reproduction organ weights in gonadectomised adult male rats. Acta Endocr., 84, 829–841PubMedGoogle Scholar
  120. Vertes, M. and King, R. J. B. (1971). The mechanism of oestradiol binding in rat hypothalamus: effect of androgenisation. J. Endocr., 51, 271–282PubMedCrossRefGoogle Scholar
  121. Wade, G. N. and Feder, H. H. (1972). Effects of several pregnane and pregnene steroids on estrous behavior in ovariectomised estrogen-primed guinea-pigs. Physiol. Behay., 9, 773775Google Scholar
  122. Wade, G. N., Harding, C. F. and Feder, H. H. (1973). Neural uptake of [1, 2–3H] progesterone in ovariectomised rats, guinea-pigs and hamsters: correlation with species differences in behavioral responsiveness. Brain Res., 61, 357–367PubMedCrossRefGoogle Scholar
  123. Weiner, R. I. (1975). Role of brain catecholamines in the control of LH and prolactin secretion. In M. Motta, P. G. Crosignani and L. Martini (eds.). Hypothalamic Hormones, Academic Press, London, 249–253Google Scholar
  124. Weisz, J. and Gibbs, C. (1974). Conversion of testosterone and androstenedione to estrogens in vitro by the brain of female rats. Endocrinology, 94, 616–620PubMedCrossRefGoogle Scholar
  125. Whalen, R. E. and de Bold, J. F. (1974). Comparative effectiveness of testosterone, androstenedione and dihydrotestosterone in maintaining mating behavior in the castrated male hamster. Endocrinology, 95, 1674–1679PubMedCrossRefGoogle Scholar
  126. Whalen, R. E. and Luttge, W. G. (1971). Differential localisation of progesterone uptake in brain. Role of sex, oestrogen pretreatment and adrenalectomy. Brain Res., 33, 147–155PubMedCrossRefGoogle Scholar
  127. Wilson, J. D. and Gloyna, R. E. (1970). The intranuclear metabolism of testosterone in the accessory organs of reproduction. Recent Progr. Hormone Res., 26, 309–336PubMedGoogle Scholar
  128. Zanisi, M. and Martini, L. (1975). Effects of progesterone metabolites on gonadotrophin secretion. J. Steroid Biochem., 6, 1021–1023PubMedCrossRefGoogle Scholar
  129. Zanisi, M., Motta, M. and Martini, L. (1973). Inhibitory effect of 5-alpha-reduced metabolites of testosterone on gonadotrophin secretion. J. Endocr., 56, 315–316PubMedCrossRefGoogle Scholar
  130. Zanisi, M., Motta, M. and Martini, L. (1975). New findings on the feedback control of anterior pituitary function. In T. Charro (ed.). Basic Applications and Clinical Use of Hypothalamic Hormones, Excerpta Medica, Amsterdam, 178–191Google Scholar

Copyright information

© B. Cox, I. D. Morris and A. H. Weston 1978

Authors and Affiliations

  • L. Martini
    • 1
  1. 1.Department of EndocrinologyUniversity of MilanMilanoItaly

Personalised recommendations