Skip to main content

The hypothalamus as an endocrine target organ

  • Chapter
Pharmacology of the Hypothalamus

Abstract

The concept that the brain may be a target for hormone action originated with the pioneer studies of Berthold, who, in 1849, reported the striking changes in aggressive and sexual behaviour occurring in cockerels after castration and concluded that testicular secretions may influence the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agmo, A. and Sodersten, P. (1975). Sexual behaviour in castrated rabbits treated with testosterone, oestradiol, dihydrotestosterone or oestradiol in combination with dihydrotestostcrone. J. Endocr., 67, 327–332

    Article  PubMed  CAS  Google Scholar 

  • Alsum, P. and Goy, R. W. (1974). Action of esters of testosterone, dihydrotestosterone or oestradiol on sexual behaviour in castrated male guinea-pigs. Hormones Behay., 5, 207–217

    Article  CAS  Google Scholar 

  • Armstrong, E. G., Jr. and Villee, C. A. (1977). Characterisation and comparison of oestrogen and androgen receptors of calf anterior pituitary. J. Steroid Biochem., 8, 285–292

    Article  PubMed  CAS  Google Scholar 

  • Atger, M., Baulieu, E. E. and Milgrom, E. (1974). An investigation of progesterone receptors in guinea-pig vagina, uterine cervix, mammary glands, pituitary and hypothalamus. Endocrinology, 94, 161–167

    Article  PubMed  CAS  Google Scholar 

  • Ball, F., Knuppen, R., Haupt, M. and Breuer, H. (1972). Interaction between oestrogens and catecholamines. III. Studies on the methylation of catecholestrogens, catecholamines and other catechols by the catechol-o-methyltransferase of human liver. J. Clin. Endocr. Metab., 34 736–746

    Article  PubMed  CAS  Google Scholar 

  • Barley, J., Ginsburg, M., MacLusky, N. Y., Morris, I. D. and Thomas, P. J. (1977). Sex differences in the distribution of cytoplasmic oestrogen receptors in rat brain and pituitary: effects of gonadectomy and neonatal androgen treatment. Brain Res., 309–318

    Google Scholar 

  • Barraclough, C. A. (1967). Modifications in reproductive function after exposure to hormones during the prenatal and early postnatal period. In L. Martini and W. F. Ganong (eds.). Neuroendocrinology, Vol. 2, Academic Press, New York, 61–99

    Chapter  Google Scholar 

  • Berthold, A. A. (1849). Transplantation of the testes. Arch. Anat. Physiol. Wiss. Med, 16, 42–46

    Google Scholar 

  • Beyer, C. (1976). Neuroendocrine mechanisms in sexual behaviour. In F. Naftolin, K. Y. Ryan and I. Y. Davies (eds.). Subcellular Mechanisms in Reproductive Neuroendocrinology. Elsevier Scientific Publishing Company, Amsterdam, 471–485

    Google Scholar 

  • Beyer, C., Larsson, K., Perez-Palacios, G. and Morali, G. (1973). Androgen structure and male sexual behaviour in the castrated rat. Hormones Behay., 4, 99–108

    Article  CAS  Google Scholar 

  • Bolt, H. M. and Kappus, H. (1976). Interaction by 2-hydroxyestrogens with enzymes of drug metabolism. J. Steroid Biochem., 7, 311–313

    Article  PubMed  CAS  Google Scholar 

  • Bosley, C. G. and Leavitt, W. W. (1972). Specificity of progesterone action during the preovulatory period in the cyclic hamster. Fed. Proc., 31, 257–258

    Google Scholar 

  • Celotti, F., Farina, J., Cresti, L., Massa, R. and Martini, L. (1976). 5alpha-reductase activity (5alpha-R) in rat pituitary homografts under the kidney capsule. Program 5th Intern. Congr. Endocr., Excerpta Medica, Amsterdam, 44–45

    Google Scholar 

  • Celotti, F., Massa, R. and Martini, L. (1978). Metabolism of sex steroids in the central nervous system. In L. J. De Groot (ed.). Metabolic Basis of Endocrinology. Grune and Stratton, New York, to be published

    Google Scholar 

  • Cheng, Y. J. and Karavolas, H. J. (1975). Properties and subcellular distribution of A4-steroid (progesterone) 5alpha-reductase in rat anterior pituitary. Steroids, 26, 57–72

    Article  PubMed  CAS  Google Scholar 

  • Christiansen, L. W. and Clemens, L. G. (1974). Intrahypothalamic implants of testosterone or oestradiol and resumption of masculine sexual behaviour in long-term castrated male rats. Endocrinology, 95, 984–990

    Article  Google Scholar 

  • Cresti, L. and Massa, R. (1976). Metabolism of androgens in various testosterone-dependent tissues. Program 5th Intern. Congr. Endocr., Excerpta Medica, Amsterdam, 46–47

    Google Scholar 

  • Czaja, J. A., Goldfoot, D. A. and Karavolas, H. J. (1974). Comparative facilitation and inhibition of lordosis in the guinea-pig with progesterone, 5alpha-pregnane 3.20-dione or 3alphahydroxy-5alpha-pregnan-20-one. Hormones Behay., 5, 261–274

    Article  CAS  Google Scholar 

  • David, M. A., Fraschini, F. and Martini, L. (1965). Parallélisme entre le contenu hypophysaire en FSH et le contenu hypothalmique en FSH-RF (FSH-releasing factor). C. R. Acad Sci., 261, 2249–2251

    CAS  Google Scholar 

  • Davies, I. J., Naftolin, F. and Ryan, K. J. (. 1975 ). The affinity of catechol for oestrogen receptors in the pituitary and anterior hypothalamus of the rat. Endocrinology, 97, 554–557

    Article  PubMed  CAS  Google Scholar 

  • Denef, C., Magnus, C. and McEwen, B. S. (1973). Sex differences and hormonal control of testosterone metabolism in rat pituitary and brain. J. Endocr., 59, 605–621

    Article  PubMed  CAS  Google Scholar 

  • Döcke, F. and Dörner, G. (1975). Anovulation in adult female rats after neonatal intracerebral implantation of oestrogen. Endokrinologie, 65, 375–377

    PubMed  Google Scholar 

  • Doughty, C., Booth, J. E., McDonald, P. G. and Parrott, R. F. (1975). Inhibition, by the antioestrogen MER-25, of the defeminization induced by the synthetic oestrogen RU 2858. J. Endocr., 67, 459–460

    Article  PubMed  CAS  Google Scholar 

  • Eik-Nes, K. B. (1975). Production and secretion of 5alpha-reduced testosterone (DHT) by male reproductive organs. J. Steroid Biochem., 6, 337–339

    Article  PubMed  CAS  Google Scholar 

  • Feder, H. H., Naftolin, F. and Ryan, K. J. (1974). Male and female sexual responses in male rats given estradiol benzoate and 5alpha-androstan-17beta-o1–3-one propionate. Endocrinology, 94, 136–141

    Article  PubMed  CAS  Google Scholar 

  • Fishman, J. (1976). Estrogen metabolism by neuroendocrine tissues. In F. Naftolin, K. J. Ryan and I. J. Davies (eds.). Subcellular Mechanisms in Reproductive Neuroendocrinology. Elsevier Scientific Publishing Company, Amsterdam, 357–362

    Google Scholar 

  • Fishman, J., Naftolin, F., Davies, I. J., Ryan, K. J. and Petro, Z. (1976). Catecholestrogen formation by the human foetal brain and pituitary. J. Clin. Endocr. Metab., 42, 177–180

    Article  PubMed  CAS  Google Scholar 

  • Fishman, J. and Norton, B. (1975). Catecholestrogen formation in the central nervous system of the rat. Endocrinology, 96, 1054–1058

    Article  PubMed  CAS  Google Scholar 

  • Flores, F., Naftolin, F., Ryan, K. J. and White, R. J. (1973). Estrogen formation by the isolated perfusal Rhesus monkey brain. Science, 180, 1074–1075

    Article  PubMed  CAS  Google Scholar 

  • Fox, T. O. (1977). Estradiol and testosterone binding in normal and mutant mouse cerebellum: biochemical and cellular specificity. Brain Res., 128, 263–273

    Article  PubMed  CAS  Google Scholar 

  • Fuxe, K. and Hökfelt, T. (1969). Catecholamines in the hypothalmus and in the pituitary gland. In W. F. Ganong and L. Martini (eds.). Frontiers in Neuroendocrinology, Vol. 1, Oxford University Press, New York, 47–96

    Google Scholar 

  • Ginsburg, M., Greenstein, B. D., MacLusky, N. J., Morris, I. D. and Thomas, P. J. (1971). Dihydrotestosterone binding in brain and pituitary cytosol of rats. J. Endocr., 61, XXIV

    Google Scholar 

  • Gordon, S., Cantrall, E. W., Cekleniak, W. P., Albers, H. J., Mauer, S., Stolar, S. M. and Bernstein, S. (1964). Steroid and lipid metabolism. The hypocholesteremic effect of estrogen metabolites. Steroids, 4, 267–271

    Article  CAS  Google Scholar 

  • Gorski, R. A. (1963). Modification of ovulatory mechanisms by postnatal administration of estrogen to the rat. Amer. J. Physiol., 205, 842–844

    PubMed  CAS  Google Scholar 

  • Gorski, R. A. (1971). Gonadal hormones and the perinatal development of neuroendocrine function. In L. Martini and W. F. Ganong (eds.). Frontiers in Neuroendocrinology, Vol. 2. Oxford University Press, New York, 237–290

    Google Scholar 

  • Gorzalka, B. B. and Whalen, R. E. (1974). Genetic regulation of hormone action: selective effects of progesterone and dihydroprogesterone (5-alpha-pregnane-3, 20-dione) on sexual receptivity in mice. Steroids, 23, 499–505

    Article  PubMed  CAS  Google Scholar 

  • Goy, R. W. and Resko, J. A. (1972). Gonadal hormones and behaviour of normal and pseudohermaphroditic non-human female primates. Recent Progr. Hormone Res., 28, 707–733

    PubMed  CAS  Google Scholar 

  • Iramain, C. A., Danzo, B. J., Stratt, C. A. and Toft, D. O. (1973). Program 4th Intern. Congr. Soc. Psychoneuroendocrinology, p. 5.

    Google Scholar 

  • Jenkin, G., Henville, A. and Heap, R. B. (1975). Metabolism of oestrone sulphate and binding by the brain and pituitary of foetal and adult sheep. J. Endocr., 64, 22–23 P

    Google Scholar 

  • Jensen, E. V. and de Sombre, E. R. (1973). Estrogen-receptor interaction. Science, 182, 126–134

    Article  PubMed  CAS  Google Scholar 

  • Jouan, P., Samperez, S. and Thieulant, M. L. (1973). Testosterone ‘receptors’ in purified nuclei of rat anterior hypophysis. J. Steroid Biochem., 4, 65–74

    Article  PubMed  CAS  Google Scholar 

  • Juneja, H. S., Motta, M., Massa, R., Zanisi, M. and Martini, L. (1976). Feedback control of gonadotropin secretion in the male. In P. O. Hubinont and M. L’Hermite (eds.). Sperm Action, Karger, Basel, 162–173

    Google Scholar 

  • Karavolas, H. J., Hodges, D. and O’Brien, D. (1976). Uptake of 3H-progesterone and 3H-5alpha-dihydroprogesterone by rat tissues in vivo and analysis of accumulated radioactivity: accumulation of 5-alpha-dihydroprogesterone by pituitary and hypothalamic tissues. Endocrinology, 98, 164–175

    Article  PubMed  CAS  Google Scholar 

  • Karavolas, H. J. and Nuti, K. M (1976). Progesterone metabolism by neuroendocrine tissues. In F. Naftolin, K. J. Ryan and I. J. Davies (eds.). Subcellular Mechanisms in Reproductive Neuroendocrinology, Elsevier Scientific Publishing Company, Amsterdam, 305–326

    Google Scholar 

  • Kato, J. (1975). The’ role of hypothalamic and hypophyseal 5-alpha-dihydrotestosterone, estradiol and progesterone receptors in the mechanism of feedback action. J. Steroid Biochem., 6, 979–987

    Article  PubMed  CAS  Google Scholar 

  • Kato, J. (1976). Cytosol and nuclear receptors for 5-alpha-dihydrotestosterone and testosterone in the hypothalamus and hypophysis, and testosterone receptors isolated from neonatal female rat hypothalamus. J. Steroid Biochem.. 7. 1179–1187

    Article  PubMed  CAS  Google Scholar 

  • Kato, J. and Onouchi, T. (1977). Specific progesterone receptors in the hypothalamus and anterior hypophysis of the rat. Endocrinology, 101, 920–928

    Article  PubMed  CAS  Google Scholar 

  • Kawahara, F. S., Berman, M. L. and Green, O. C. (1975). Conversion of progesterone [1–2–3H] to 5–beta–pregnane–3. 20–dione by brain tissue. Steroids, 25, 459 – 463

    Article  PubMed  CAS  Google Scholar 

  • Kazama, N. and Longcope, C. (1974). In vivo studies on the metabolism of estrone and estradiol-17-beta by the brain. Steroids, 23, 469–481

    CAS  Google Scholar 

  • Keefer, D. A., Stumpf, W. E. and Sar, M. (1973). Estrogen-topographical localisation of estrogen-concentrating cells in the rat spinal cord following 3H-estradiol administration. Proc. Soc. exp. Biol., Med., 143, 414–417

    Article  CAS  Google Scholar 

  • Kishimoto, Y. (1973). Estrone sulphate in rat brain: uptake from blood and metabolism in vivo. J. Neurochem., 20, 1489–1492

    Article  PubMed  CAS  Google Scholar 

  • Kniewald, Z., Massa, R. and Martini, L. (1971). Conversion of testosterone into 5-alpha androstan-17-beta-o1–3-one at the anterior pituitary and hypothalamic level. In V. H. T. James and L. Martini (eds.). Hormonal Steroids, Excerpta Medica, Amsterdam, 784–791

    Google Scholar 

  • Krieger, M. S., Morrell, J. I. and Pfaff, D. W. (1976). Autoradiographic localisation of estradiol-concentrating cells in the female hamster brain. Neuroendocrinology, 22, 193–205

    Article  PubMed  CAS  Google Scholar 

  • Kulin, H. E. and Reiter, E. O. (1972). Gonadotrophin suppression by low-dose estrogen in men: evidence for differential effects upon FSH and LH. J. Clin. Endocr. Metab., 35, 836–839

    Article  PubMed  CAS  Google Scholar 

  • Larsson, K., Sodersten, P., Beyer, C., Morali, G. and Perez-Palacios, G. (1976). Effects of estrone, estradiol and estriol combined with dihydrotestosterone on mounting and lordosis behavior in castrated male rats. Hormones Behay., 7, 379–390

    Article  CAS  Google Scholar 

  • Laumas, K. R. and Farooq, A. (1966). The uptake in vivo of [1, 2–3H] progesterone by the brain and genital tract of the rat. J. Endocr., 36, 95–96

    Article  PubMed  CAS  Google Scholar 

  • Lieberburg, I., MacClusky, N. J. and McEwen, B. S. (1977). 5-alpha-dihydrotestosterone (DHT) receptors in rat brain and pituitary cell nuclei. Endocrinology, 100, 598–607

    Google Scholar 

  • Lieberburg, I. and McEwen, B. S. (1975). Estradiol-17-beta: a metabolite of testosterone recovered in cell nuclei from limbic areas of male adult rat brains. Brain Res., 85, 165–170

    Article  PubMed  CAS  Google Scholar 

  • Lieberburg, I. and McEwen, B. S. (1977). Brain cell nuclear retention of testosterone metabolites, 5-alpha-dihydrotestosterone and estradiol-l7-beta in adult rats. Endocrinology, 100, 588–597

    Article  PubMed  CAS  Google Scholar 

  • Lloyd, R. V. and Karavolas, H. J. (1975). Uptake and conversion of progesterone and testosterone to 5-alpha-reduced products by enriched gonadotropic and chromophobic rat anterior pituitary cell fractions. Endocrinology, 97, 517–526

    Article  PubMed  CAS  Google Scholar 

  • Luttge, W. G., Hall, N. R., Wallis, C. J. and Campbell, J. C. (1975). Stimulation of male and female sexual behaviour in gonadectomised rats with estrogen and androgen therapy and its inhibition with concurrent antihormone therapy. Physiol Behay., 14, 65–73

    Article  CAS  Google Scholar 

  • Luttge, W. G. and Whalen, R. E. (1970). Regional localisation of estrogenic metabolites in the brain of male and female rats. Steroids, 15, 605–612

    Article  PubMed  CAS  Google Scholar 

  • McDonald, P. G. and Doughty, C. (1972). Comparison of the effect of neonatal administration of testosterone and dihydrotestosterone in female rat. J. Reprod. Fertil, 30, 55–62

    Article  PubMed  CAS  Google Scholar 

  • McDonald, P. G. and Doughty, C. (1974). Effect of neonatal administration of different androgens in the female rat: correlation between aromatisation and the induction of sterilisation. J. Endocr., 61, 95–103

    Article  PubMed  CAS  Google Scholar 

  • McEwen, B. S. (1978). Distribution and binding of hormones in different CNS areas. In L. J. De Groot (ed.). Metabolic Basis of Endocrinology. Grune and Stratton, New York, to be published

    Google Scholar 

  • McEwen, B. S., Zigmond, R. E. and Gerlach, G. H. (1972). Sites of steroid binding and action in the brain. In G. H. Bourne (ed.). Structure and Function of Nervous Tissue, vol. 5, Academic Press, New York, 205–291

    Google Scholar 

  • Martini, L. (1976). Androgen reduction by neuroendocrine tissues: physiological significance. In F. Naftolin, K. J. Ryan and I. J. Davies (eds.). Subcellular Mechanisms in Reproductive Neuroendocrinology, Elsevier Scientific Publishing Company, Amsterdam, 327–345

    Google Scholar 

  • Martini, L. (1977). Recent views on the control of anterior pituitary function. Acta Endocr., SuppL 214, 19–32

    CAS  Google Scholar 

  • Martini, L., Fraschini, F. and Motta, M. (1968). Neural control of anterior pituitary functions. Recent Progr. Hormone Res., 24, 439–496

    PubMed  CAS  Google Scholar 

  • Massa, R., Justo, S. and Martini, L. (1975). Conversion of testosterone into 5-alpha-reduced metabolites in the anterior pituitary and in the brain of maturing rats. J. Steroid Biochem., 6, 567–571

    Article  PubMed  CAS  Google Scholar 

  • Massa, R., Stupnicka, E., Kniewald, Z. and Martini, L. (1972a). The transformation of testosterone into dihydrotestosterone by the brain and the anterior pituitary. J. Steroid Biochem., 3, 385–399

    Article  PubMed  CAS  Google Scholar 

  • Massa, R., Stupnicka, E. and Martini, L. (1972b). Metabolism of progesterone in the anterior pituitary, the hypothalamus and the uterus of female rats. Program 4th Intern. Congr. Endocr., Excerpta Medica, Amsterdam, 118

    Google Scholar 

  • Maurer, R. A. and Woolley, D. E. (1974). Demonstration of nuclear 3H-estradiol binding in hypothalamus and amygdala of female, androgenised-female and male rats. Neuroendocrinology, 16, 137–147

    Article  PubMed  CAS  Google Scholar 

  • Mercier, L., LeGuellec, C., Thieulant, M. L., Samperez, S. and Jouan, P. (1976). Androgen and estrogen receptors in the cytosol from male rat anterior hypophysis: further characteristics and differentiation between androgen and estrogen receptors. J. Steroid Biochem., 7, 779–785

    Article  PubMed  CAS  Google Scholar 

  • Meyerson, B. (1972). Latency between intravenous injection of progestins and the appearance of estrus behaviour in estrogen-treated ovariectomised rats. Hormones Behay., 3, 1–9

    Article  CAS  Google Scholar 

  • Mickan, H. (1972). Metabolism of 4–14C-progesterone and 4–14C-testosterone in brain of the previable human fetus. Steroids, 19, 659–665

    Article  PubMed  CAS  Google Scholar 

  • Morrell, J. I., Kelley, D. B. and Pfaff, D. W. (1975). Sex steroid binding in the brains of vertebrates. Studies with light microscopic autoradiography. In K. M. Knigge, D. E. Scott, H. Kobayashi and S. Ishii (eds.). Brain-Endocrine Interactions. Part II: The Ventricular System in Neuroendocrine Mechanisms, Karger, Basel, 230–256

    Google Scholar 

  • Moss, R. L. (1976). Unit responses in preoptic and arcuate neurons related to anterior pituitary function. In L. Martini and W. F. Ganong (eds.). Frontiers in Neuroendocrinology, Vol. 4, Raven Press, New York, 95–128

    Google Scholar 

  • Mowles, T. F., Ashkanazy, B., Mix, E., Jr. and Sheppard, H. (1971). Hypothalamic and hypophyseal estradiol-binding complexes. Endocrinology, 89, 484–491

    Article  PubMed  CAS  Google Scholar 

  • Naess, O., Attramadal, A. and Aakvaag, A. (1975). Androgen-binding proteins in the anterior pituitary, hypothalamus, preoptic area and brain cortex of the rat. Endocrinology, 96, 1–9

    Article  PubMed  CAS  Google Scholar 

  • Naftolin, F., Morishita, H., Davies, I. J., Todd, R. and Ryan, K. J. (1975a). 2-Hydroxyestroneinduced rise in serum luteinising hormone in the immature male rat. Biochem. Biophys. Res. Commun., 64, 905–910

    Google Scholar 

  • Naftolin, F., Ryan, K. J. and Davies, I. J. (1976). Androgen aromatisation by neuroendo crine tissues. In F. Naftolin, K. J. Ryan, and I. J. Davies (eds.). Subcellular Mechanisms in Reproductive Neuroendocrinology, Elsevier Scientific Publishing Company, Amsterdam, 347–355

    Google Scholar 

  • Naftolin, F., Ryan, K. J., Davies, I. J., Reddy, V. V., Flores, F., Petro, Z., Kuhn, M., White, R. S., Takaoka, Y. and Wolin, L. (1975b). The formation of estrogens by central neuroendocrine tissues. Recent Progr. Hormone Res., 31, 295–319

    PubMed  CAS  Google Scholar 

  • Nakamura, T. and Tanabe, Y. (1975). In vitro metabolism of steroid hormones by chicken brain. Acta Endocr., 75, 410–416

    Google Scholar 

  • Neill, J. D. and Smith, M. S. (1974). Pituitary-ovarian inter-relationships in the rat. In V. H. T. James and L. Martini (eds.). Current Topics in Experimental Endocrinology, Vol. 2, Academic Press, New York, 73–106

    Google Scholar 

  • Notides, A. C. (1970). Binding affinity and specificity of the estrogen receptor of the rat uterus and anterior pituitary. Endocrinology, 87, 987–992

    Article  PubMed  CAS  Google Scholar 

  • Nowak, F. V. and Karavolas, H. J. (1974). Conversion of 20-alpha-hydroxypregnen-4.en-3one to 20-alpha-hydroxy-5-alpha-pregnan-3-one and 5-alpha-pregnane-3-alpha, 20-alphadiol by rat medial basal hypothalamus. Endocrinology, 94, 994–997

    Article  PubMed  CAS  Google Scholar 

  • P’an, S. V. and Laubach, G. D. (1964). Steroid central depressants. In R. I. Dorfman (ed.). Methods in Hormone Research, VoL 3, Academic Press, New York, 415–475

    Google Scholar 

  • Parrott, R. F. and McDonald, P. G. (1975). Sexual behavior of male rats implanted in the brain with 19-hydroxytestosterone. J. Endocr., 64, 37–38 P

    Article  Google Scholar 

  • Parvizi, N. and Ellendorff, F. (1975). 2-hydroxy-oestradiol-17-beta as a possible link in steroid brain interaction. Nature, 256, 59–60

    Google Scholar 

  • Payne, A. H., Lawrence, C. C., Foster, D. L. and Jaffe, R. B. (1973). Intranuclear binding of 17-beta-estradiol and estrone in female ovine pituitaries following incubation with estrone sulfate. J. Biol. Chem., 248, 1598–1602

    PubMed  CAS  Google Scholar 

  • Pilven, A., Thieulant, M. L., Ducouret, B., Samperez, S. and Jouan, P. (1976). Rapid and intensive conversion of 5-alpha-androstane-3-alpha, 17-beta-diol into 5-alpha-dihydrotestosterone in the male rat anterior pituitary: in vivo and in vitro studies. Steroids, 28, 349359

    Google Scholar 

  • Piva, F., Motta, M. and Martini, L. (1978).. Long, short and ultra-short feedback loops. In L. J. De Groot (ed.). Metabolic Basis of Endocrinology. Grune and Stratton, New York, to be published

    Google Scholar 

  • Plapinger, L. and McEwen, B. S. (1973). Autogeny of estradiol-binding sites in rat brain. Part I: Appearance of presumptive adult receptors in cytosol and nuclei. Endocrinology, 93, 1119–1128

    Article  PubMed  CAS  Google Scholar 

  • Raisman, G. and Field, P. M. (1971). Anatomical considerations relevant to the interpretation of neuroendocrine experiments. In L. Martini and W. F. Ganong (eds.). Frontiers in Neuroendocrinology, Vol. 2, Oxford University Press, New York, 3–44

    Google Scholar 

  • Raynaud, J. P., Mercier-Bodard, C. and Baulieu, E. E. (1971). Rat estradiol-binding plasma protein (EBP). Steroids, 18, 767–788

    Article  PubMed  CAS  Google Scholar 

  • Reddy, V. V. R., Naftolin, F. and Ryan, K. J. (1973). Aromatisation in the central nervous system of rabbits: effects of castration and hormone treatment. Endocrinology, 92, 589–594

    Article  PubMed  CAS  Google Scholar 

  • Reddy, V. V. R., Naftolin, F. and Ryan, K. J. (1974a). Steroid 17-beta-oxydoreductase activity in the rabbit central nervous system and adenohypophysis. J. Endocr., 62, 401–402

    Article  PubMed  CAS  Google Scholar 

  • Reddy, V. V. R., Naftolin, F. and Ryan, K. J. (1974b). Conversion of androstenedione to estrone by neural tissues from fetal and neonatal rats. Endocrinology, 94, 117–121

    Article  PubMed  CAS  Google Scholar 

  • Rommerts, F. F. G. and Van der Molen, H. J. (1971). Occurrence and localisation of 5alpha-steroid reductase, 3-alpha- and 17-beta-hydroxysteroid dehydrogenases in hypothalamus and other brain tissues of the male rat. Biochim. Biophys. Acta, 248, 489–502

    Article  CAS  Google Scholar 

  • Sanyal, M. K. and Todd, R. B. (1972). 5-alpha-dihydroxyprogesterone influence on ovulation of prepubertal rats. Proc. Soc. exp. Biol. Med., 141, 622–624

    Google Scholar 

  • Sar, M. and Stumpf, W. E. (1973a). Cellular and subcellular localisation of radioactivity in the rat pituitary after injection of 1, 2–3H-testosterone using dry-autoradiography. Endocrinology, 92, 631–635

    Article  PubMed  CAS  Google Scholar 

  • Sar, M. and Stumpf, W. E. (1973b). Autoradiographic localisation of radioactivity in the rat brain after the injection of 1, 2–3H-testosterone. Endocrinology, 92, 251–256

    Article  PubMed  CAS  Google Scholar 

  • Sar, M. and Stumpf, W. E. (1973c). Neurons of the hypothalamus concentrate 3H-progesterone or its metabolites. Science, 182, 1266–1268

    Article  PubMed  CAS  Google Scholar 

  • Sar, M. and Stumpf, W. E. (1975). Distribution of androgen-concentration neurons in rat brain. In W. E. Stumpf, and L. D. Grant (eds.). Anatomical Neuroendocrinology, Karger, Basel, 120–133

    Google Scholar 

  • Seiki, K., Haruki, Y., Imanishi, Y. and Enomoto, T. (1977). Further evidence of presence of progesterone-binding proteins in female rat hypothalamus. Endocr. Japon., 24, 233–238

    Article  CAS  Google Scholar 

  • Seiki, K. and Hattori, M. (1971). A more extensive study on the uptake of labelled progesterone by the hypothalamus and pituitary gland of rats. J. Endocr., 51, 793–794

    Article  PubMed  CAS  Google Scholar 

  • Seiki, K. and Hattori, M. (1973). In vivo uptake of progesterone by the hypothalamus and pituitary of the female ovariectomised rat and its relationship to cytoplasmic progesterone-binding protein. Endocr. Japon., 20, 111–119

    CAS  Google Scholar 

  • Seiki, K., Miyamoto, M., Yamashita, A. and Kottani, M. (1969). Further straies on the uptake of labelled progesterone by the hypothalamus and pituitary of rats. J..adocr., 43, 129–130

    Article  PubMed  CAS  Google Scholar 

  • Shridharan, B. N., Meyer, R. K. and Karavolas, H. J. (1974). Effect of 5-alpha-dihydroprogest-erone, pregn-5-ene-3, 20-dione, pregnelone and related progestins on ovulation in PMSG-treated immature rats. J. Reprod. Fertil., 36, 83–90

    Article  Google Scholar 

  • Sodersten, P. (1973). Estrogen-activated sexual behaviour in male rats. Hormones Behay., 4, 247–256

    Article  CAS  Google Scholar 

  • Stewart-Bentley, M., Odell, W. D. and Horton, R. (1974). The feedback control of luteinising hormone in normal adult men. J. Clin. Endocr. Metab., 38, 545–553.

    Article  PubMed  CAS  Google Scholar 

  • Stumpf, W. E., Sar, M. and Keefer, D. A. (1975). Atlas of estrogen target cells in rat brain. In W. E. Stumpf and L. D. Grant (eds.). Anatomical Neuroendocrinology, Karger, Basel, 104–109

    Google Scholar 

  • Stupnicka, E., Massa, R., Zanisi, M. and Martini, L. (1977). Role of anterior pituitary and hypothalamic metabolism of progesterone in the control of gonadotropin secretion. In P. O. Hubinont, M. l’Hermite and C. Robyn (eds.). Clinical Reproductive Neuroendocrinology, Karger, Basel, 88–95

    Google Scholar 

  • Swerdloff, R. S., Grover, P. K., Jacobs, H. S: and Bain, J. (1973). Search for a substance which selectively inhibits FSH-effects of steroids and prostaglandins on serum FSH and LH levels. Steroids, 21, 703–722

    Google Scholar 

  • Swerdloff, R. S., Walsh, M. D. and Odell, W. D. (1972). Control of LH and FSH secretion in the male: evidence that aromatisation of androgens to estradiol is not required for inhibition of gonadotropin secretion. Steroids, 20, 13–22

    Article  PubMed  CAS  Google Scholar 

  • Tabei, T., Haga, H., Heinrichs, W. L. and Hermann, W. L. (1974). Metabolism of progesterone by rat brain, pituitary gland and other tissues. Steroids, 23, 651–666

    PubMed  CAS  Google Scholar 

  • Tabei, T. and Heinrichs, W. L. (1974). Metabolism of progesterone by the brain and pituitary gland of sub-human primates. Neuroendocrinology, 15, 281–289

    Article  PubMed  CAS  Google Scholar 

  • Verjans, H. L. and Eik-Nes, K. B. (1977). Comparisin of effects of C19 (androstene or androstane) steroids on serum gonadotrophin concentrations and on accessory reproduction organ weights in gonadectomised adult male rats. Acta Endocr., 84, 829–841

    PubMed  CAS  Google Scholar 

  • Vertes, M. and King, R. J. B. (1971). The mechanism of oestradiol binding in rat hypothalamus: effect of androgenisation. J. Endocr., 51, 271–282

    Article  PubMed  CAS  Google Scholar 

  • Wade, G. N. and Feder, H. H. (1972). Effects of several pregnane and pregnene steroids on estrous behavior in ovariectomised estrogen-primed guinea-pigs. Physiol. Behay., 9, 773775

    Google Scholar 

  • Wade, G. N., Harding, C. F. and Feder, H. H. (1973). Neural uptake of [1, 2–3H] progesterone in ovariectomised rats, guinea-pigs and hamsters: correlation with species differences in behavioral responsiveness. Brain Res., 61, 357–367

    Article  PubMed  CAS  Google Scholar 

  • Weiner, R. I. (1975). Role of brain catecholamines in the control of LH and prolactin secretion. In M. Motta, P. G. Crosignani and L. Martini (eds.). Hypothalamic Hormones, Academic Press, London, 249–253

    Google Scholar 

  • Weisz, J. and Gibbs, C. (1974). Conversion of testosterone and androstenedione to estrogens in vitro by the brain of female rats. Endocrinology, 94, 616–620

    Article  PubMed  CAS  Google Scholar 

  • Whalen, R. E. and de Bold, J. F. (1974). Comparative effectiveness of testosterone, androstenedione and dihydrotestosterone in maintaining mating behavior in the castrated male hamster. Endocrinology, 95, 1674–1679

    Article  PubMed  CAS  Google Scholar 

  • Whalen, R. E. and Luttge, W. G. (1971). Differential localisation of progesterone uptake in brain. Role of sex, oestrogen pretreatment and adrenalectomy. Brain Res., 33, 147–155

    Article  PubMed  CAS  Google Scholar 

  • Wilson, J. D. and Gloyna, R. E. (1970). The intranuclear metabolism of testosterone in the accessory organs of reproduction. Recent Progr. Hormone Res., 26, 309–336

    PubMed  CAS  Google Scholar 

  • Zanisi, M. and Martini, L. (1975). Effects of progesterone metabolites on gonadotrophin secretion. J. Steroid Biochem., 6, 1021–1023

    Article  PubMed  CAS  Google Scholar 

  • Zanisi, M., Motta, M. and Martini, L. (1973). Inhibitory effect of 5-alpha-reduced metabolites of testosterone on gonadotrophin secretion. J. Endocr., 56, 315–316

    Article  PubMed  CAS  Google Scholar 

  • Zanisi, M., Motta, M. and Martini, L. (1975). New findings on the feedback control of anterior pituitary function. In T. Charro (ed.). Basic Applications and Clinical Use of Hypothalamic Hormones, Excerpta Medica, Amsterdam, 178–191

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1978 B. Cox, I. D. Morris and A. H. Weston

About this chapter

Cite this chapter

Martini, L. (1978). The hypothalamus as an endocrine target organ. In: Cox, B., Morris, I.D., Weston, A.H. (eds) Pharmacology of the Hypothalamus. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-03506-9_9

Download citation

Publish with us

Policies and ethics