Advertisement

The hypothalamus and the pharmacology of thermoregulation

  • A. S. Milton

Abstract

Homeothermic animals maintain a constant deep body temperature despite considerable variations in both their external and internal environments. To maintain deep body temperature, or perhaps more accurately body heat content, the heat production of the body must equal heat-loss. Thermoregulation is therefore simply the mechanism by which these parameters are regulated. The hypothalamus is normally regarded as being the centre for thermoregulation.

Keywords

Cerebral Ventricle Anterior Hypothalamus Intraventricular Injection Evaporative Heat Loss Antipyretic Drug 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, I. V. (1965). The cerebral effects of endogenous serum and granulocytic pyrogen. Brit. J. Exp. Pathol., 46, 25–34Google Scholar
  2. Andersson, B., Jobin, M. and Olsson, K. (1966). Serotonin and temperature control. Acta. Physiol. Scand., 67, 50–56PubMedCrossRefGoogle Scholar
  3. Atkins, E. and Bodel, P. T. (1974). Fever. In L. Grand and R. T. McClusky (eds.). The Inflammatory Process, Vol. III, Academic Press, New York, 467–514Google Scholar
  4. Banerjee, V., Burks, T. F. and Feldberg, W. (1968). Effect on temperature of 5-hydroxytryptamine injected into cerebral ventricles of cats. J. Physiol. (Lond.), 195, 245–251CrossRefGoogle Scholar
  5. Beckman, A. L. and Carlisle, H. J. (1969). Effect of intrahypothalamic infusion of acetylcholine on behavioural and physiological thermoregulation in the rat. Nature (Lond.), 221, 561–562CrossRefGoogle Scholar
  6. Beeson, P. B. (1948). Temperature-elevating effect of a substance obtained from polymorphonuclear leucocytes. J. Clin. Invest., 27, 524PubMedGoogle Scholar
  7. Bennett, I. L. and Beeson, P. B. (1953). Studies in the pathogenesis of fever. Part II: Characterisation of fever-producing substances from polymorphonuclear leucocytes and from the fluid of sterile exudates. J. exp. Med., 98, 493–508PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bennett, I. L. Jr., Petersdorf, R. G. and Keene, W. R. (1957). Pathogenesis of fever: evidence for direct cerebral action of bacterial endotoxins. Trans. Assoc. Am. Physicians, 70, 64–73PubMedGoogle Scholar
  9. Bligh, J. (1966). Effects on temperature of monoamines injected into the lateral ventricles of sheep. J. Physiol. (Lond.), 185, 46–47 PGoogle Scholar
  10. Bligh, J. (1973). Temperature Regulation in Mammals and Other Vertebrates, North-Holland Press, AmsterdamGoogle Scholar
  11. Bligh, J. and Cottle, W. H. (1969). The influence of ambient temperature on thermoregulatory responses to intraventricularly injected monoamines in sheep, goats and rabbits. Experientia, 25, 608–609PubMedCrossRefGoogle Scholar
  12. Bligh, J., Cottle, W. H. and Maskrey, M. (1971). Influence of ambient temperature on the thermoregulatory responses to 5-hydroxytryptamine, noradrenaline and acetylcholine injected into the lateral cerebral ventricles of sheep, goats and rabbits. J. Physiol. (Lond.), 212, 377–392PubMedCentralCrossRefGoogle Scholar
  13. Bligh, J. and Milton, A. S. (1973). The thermoregulatory effects of prostaglandin E, when infused into a lateral cerebral ventricle of the Welsh mountain sheep at different ambient temperatures. J. Physiol. (Lond.), 229, 30–31 PGoogle Scholar
  14. Braude, A. I., Carey, F. J. and Zalesky, M. (1955). Studies with radioactive endotoxin. Part II: Correlation of physiologic effects with distribution of radioactivity in rabbits injected with lethal doses of E. coli endotoxin labelled with radioactive sodium chromate. J. Clin. Invest., 34 (i), 858–866PubMedPubMedCentralCrossRefGoogle Scholar
  15. Breckenridge, B. McL. and Lisk, R. D. (1969). Cyclic adenylate and hypothalamic regulatory functions. Proc. Soc. exp. Biol. Med., 131, 934–935PubMedCrossRefGoogle Scholar
  16. Brittain, R. T. and Handley, S. L. (1967). Temperature changes produced by the injection of catecholamines and 5-hydroxytryptamine into the cerebral ventricles of the conscious mouse. J. Physiol. (Lond.), 192, 805–813CrossRefGoogle Scholar
  17. Brodie, B. B. and Shore, P. A. (1957). A concept for a role of serotonin and norepinephrine as chemical mediators in the brain. Ann. N. Y. Acad. Sci., 66, 631–642PubMedCrossRefGoogle Scholar
  18. Butcher, R. W. (1968). Role of cyclic AMP in hormone actions. New Engl. J. Med., 279, 1378–1384PubMedCrossRefGoogle Scholar
  19. Butcher, R. W. and Sutherland, E. W. (1962). Adenosine 3’, 5’-phosphate in biological materials. Part I: Purification and properties of cyclic 3’, 5’-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3’, 5’-phosphate in human urine. J. Biol. Chem., 237, 1244–1250PubMedGoogle Scholar
  20. Cabanac, M., Stolwijk, J. A. J. and Hardy, J. D. (1968). Effect of temperature and pyrogens on single-unit activity in the rabbit’s brainstem. J. appl. Physiol., 24, 645–652PubMedGoogle Scholar
  21. Cammock, S., Dascombe, M. J. and Milton, A. S. (1976). Prostaglandins in thermoregulation. In B. Samuellson and R. Paoletti (eds.). Advances in Prostaglandin and Thromboxane Research, Vol. 1, Raven Press, New York, 375–380Google Scholar
  22. Canal, N. and Ornesi, A. (1961). La Serotonina quale agente ipertermizzante. Atti Accad. Med. Lomb., 16, 64–69Google Scholar
  23. Cheung, W. Y. (1970). Cyclic nucleotide phosphodiesterase. In P. Greengard and E. Costa (eds.). Role of cyclic AMP in Cell Function, Raven Press, New York, 51–65Google Scholar
  24. Clark, W. G. and Cumby, H. R. (1975). The antipyretic effect of indomethacin. J. Physiol. (Lond.), 248, 625–638CrossRefGoogle Scholar
  25. Clark, W. G., Cumby, H. R. and Davis, H. E. (1974). The hyperthermic effect of intracerebroventricular cholera enterotoxin in the unanesthetized cat. J. Physiol. (Lond.), 175 493–504CrossRefGoogle Scholar
  26. Cooper, K. E. (1966). Temperature regulation and the hypothalamus. Br. med. Bull., 22, 238–242PubMedGoogle Scholar
  27. Cooper, K. E., Cranston, W. I. and Honour, A. J. (1964). Temperature changes induced by 5-HT, noradrenaline and pyrogens injected into the rabbit brain. J. Physiol. (Lond), 240, 68–69 PGoogle Scholar
  28. Cooper, K. E., Cranston, W. I. and Honour, A. J. (1965). Effects of intraventricular and intra-hypothalamic injection of noradrenaline and 5-HT on body temperature in conscious rabbits. J. Physiol. (Lond.), 181, 852–864CrossRefGoogle Scholar
  29. Cooper, K. E., Cranston, W. I. and Honour. A. J. (1967). Observations on the site and mode of action of pyrogens in the rabbit brain. J. Physiol. (Lond.), 191, 325–337CrossRefGoogle Scholar
  30. Cox, B. and Lee, T. F. (1977a). Interactions between cholinergic and dopaminergic systems in thermoregulation. In K. E. Cooper, P. Lomax and E. Schtinbaum (eds.). Drugs, Biogenic Amines and Body Temperature, Karger, Basle, 30–31Google Scholar
  31. Cox, B. and Lee, T. F. (1977b). Do central dopamine receptors have a physiological role in thermoregulation? Br. J. Pharmac., 61, 83–86CrossRefGoogle Scholar
  32. Cranston, W. I., Hellon, R. F. and Mitchell, D. (1975). Fever and brain prostaglandin release. J. Physiol. (Lond.), 248, 27–29 PGoogle Scholar
  33. Cushing, H. (1931a). The similarity in the response to posterior lobe extract (pituitrin) and to pilocarpine when injected into the cerebral ventricles. Proc. Nat. Acad. Sci., 17, 171–177PubMedPubMedCentralCrossRefGoogle Scholar
  34. Cushing, H. (1931b). The action of atropine in counteracting the effects of pituitrin and of pilocarpine injected into the cerebral ventricles. Proc. Nat. Acad. Sci., 17, 178–180CrossRefGoogle Scholar
  35. Cushing, H. (1931c). The method of action of pituitrin introduced into the ventricle. Proc. Nat. Acad. Sci., 17, 239–247PubMedPubMedCentralCrossRefGoogle Scholar
  36. Dascombe, M. J. (1977). Effects of methylxanthine drugs on pyrogen-induced hyperthermia. Eur. J. Pharmac., 45, 389–392CrossRefGoogle Scholar
  37. Dascombe, M. J. and Milton, A. S. (1972). The effect of caffeine on the antipyretic action of aspirin administered during endotoxin induced fever. Br. J. Pharmac., 46, 548–549 PGoogle Scholar
  38. Dascombe, M. J. and Milton, A. S. (1975). The effects of cyclic adenosine 3’, 5’-monophosphate and other adenine nucleotides on body temperature. J. Physiol. (Lond.), 250, 143–160CrossRefGoogle Scholar
  39. Dascombe, M. J. and Milton, A. S. (1976). Cyclic adenosine 3’, 5’-monophosphate in cerebrospinal fluid during thermoregulation and fever. J. Physiol. (Lond.), 263, 441–463CrossRefGoogle Scholar
  40. Dey, P. K., Feldberg, W., Gupta, K. P., Milton, A. S. and Wendlandt, S. (1974). Further studies on the role of prostaglandins in fever. J. PhysioL (Lond.), 241, 629–646CrossRefGoogle Scholar
  41. Downey, J. A., Mottram, R. F. and Pickering, G. W. (1964). The location by regional cooling of central temperature receptors in the conscious rabbit. J. Physiol. (Lond.), 170, 415–441CrossRefGoogle Scholar
  42. Duffy, M. J. and Schwarz, V. (1974). The effects of adenosine 3’, 5’-cyclic monophosphate and adenosine triphosphate on calcium ion binding in erythrocyte membranes. Biochem. Soc. Trans., 2, 406–407CrossRefGoogle Scholar
  43. Eisenman, J. S. (1969). Pyrogen-induced changes in the thermosensitivity of septal and preoptic.neurons. Am. J. Physiol., 216, 330–334PubMedGoogle Scholar
  44. Eisenman, J. S. and Jackson, D. C. (1967). Thermal response patterns of septal and preoptic neurons in cats. Exptl. Neurol., 19, 33–45CrossRefGoogle Scholar
  45. Eliasson, S. and Strom, G. (1950). On the localization in the cat of hypothalamic and cortical structures influencing cutaneous blood flow. Acta. Physiol. Scand, 20, suppl. 70, 113–118Google Scholar
  46. von Euler, C., Linder, E. and Myrin, S.-O. (1943). Uber die Fiebererregende Wirkung des Adrenalins. Acta. Physiol. Scand., 5, 85–96CrossRefGoogle Scholar
  47. Ewen, L., Milton, A. S. and Smith, S. (1976). Effects of prostaglandin F2, and prostaglandin D2 on the body temperature of conscious cats. J. Physiol. (Lond), 258, 121–122 PGoogle Scholar
  48. Feldberg, W. and Gupta, K. P. (1973). Pyrogen fever and prostaglandin-like activity in cerebrospinal fluid. J. Physiol. (Lond.), 288, 41–53CrossRefGoogle Scholar
  49. Feldberg, W., Gupta, K. P., Milton, A. S. and Wendlandt, S. (1973). Effect of pyrogen and antipyretics on prostaglandin activity in cisternal CSF of unanaesthetized cats. J. PhysioL (Lond), 234, 279–303CrossRefGoogle Scholar
  50. Feldberg, W., Hellon, R. F. and Lotti, V. J. (1967). Temperature effects produced in dogs and monkeys by injections of monoamines and related substances into the third ventricle. J. Physiol. (Lond.), 191, 501–515CrossRefGoogle Scholar
  51. Feldberg, W., Hellon, R. F. and Myers, R. D. (1966). Effects on temperature of monoamines injected into the cerebral ventricles of anaesthetized dogs. J. Physiol, (Lond), 186, 416423Google Scholar
  52. Feldberg, W. and Lotti, V. J. (1967). Temperature responses to monoamines and an inhibitor of monoamine oxidase injected into the cerebral ventricles of rats. Br. J. Pharmac. Chemother., 31, 152–161CrossRefGoogle Scholar
  53. Feldberg, W. and Myers, R. D. (1963). A new concept of temperature regulation by amines in the hypothalamus. Nature (Lond), 200, 1325CrossRefGoogle Scholar
  54. Feldberg, W. and Myers, R. D. (1964). Effect on temperature of amines injected into the cerebral ventricles. A new concept of temperature regulation. J. Physiol (Lond), 173, 226–237CrossRefGoogle Scholar
  55. Feldberg, W. and Myers, R. D. (1965). Changes in temperature produced by microinjection of amines into the anterior hypothalamus of cats. J. Physiol.. (Lond.), 177, 239–245CrossRefGoogle Scholar
  56. Feldberg, W., Myers, R. D. and Veale, W. L. (1970). Perfusion from cerebra ventricle to cisterna magna in the unanaesthetized cat. Effect of calcium on body temperature. J. Physiol. (Lond.), 207, 403–416CrossRefGoogle Scholar
  57. Feldberg, W. and Saxena, P. N. (1970). Mechanism of action of pyrogen. J. Physiol (Loud.), 211, 245–261CrossRefGoogle Scholar
  58. Feldberg, W. and Saxena, P. N. (1971a). Effects of adrenoceptor blocking agents on body temperature. Brit. J. Pharmac., 43, 543–554CrossRefGoogle Scholar
  59. Feldberg, W. and Saxena, P. N. (197lb). Fever studies on prostaglandin E, fever in cats. J. Physiol. (Lond.), 219, 739–745Google Scholar
  60. Feldberg, W. and Saxena, P. N. (1971c). Fever produced by prostaglandin E1. J. Physiol. (Lond.), 217, 547–556CrossRefGoogle Scholar
  61. Findlay, J. D. and Robertshaw, D. (1967). The mechanism of body temperature changes induced by intraventricular injections of adrenaline, noradrenaline and 5-hydroxytryptamine in the ox (Bos taurus). J. Physiol. (Lond.), 189, 329–336PubMedCentralCrossRefGoogle Scholar
  62. Findlay, J. D. and Thompson, G. E. (1968). The effect of intraventricular injections of noradrenaline, 5-hydroxytryptamine, acetylcholine and tranylcypromine on the ox (Bos taurus) at different environmental temperatures. J. PhysioL (Lond), 194, 809–816CrossRefGoogle Scholar
  63. Flower, R. J. and Vane, J. R. (1972). Inhibition of prostaglandin synthesis in brain explains the antipyretic activity of paracetamol (4-acetamidophenol). Nature, 240, 410–411PubMedCrossRefGoogle Scholar
  64. Friedman, M. (1944). Etiology and pathogenesis of neurocirculatory asthenia. Part I: Hyperthermia as one of the manifestations of neurocirculatory asthenia. War Med., 6, 221–227Google Scholar
  65. Gessa, G. L., Krishna, G., Forn, J., Tagliamonte, A. and Brodie, B. B. (1970). Behavioral and vegetative effects produced by dibutyryl cyclic AMP injected into different areas of the brain. In F. Greengard and E. Costa (eds.). Role of Cyclic AMP in Cell Function, Raven Press, New York, 371–381Google Scholar
  66. Goldberg, A. L. and Singer, J. J. (1969). Evidence for a role of cyclic AMP in neuromuscular transmission. Proc. Natn. Acad, Sci. USA, 64, 134–141CrossRefGoogle Scholar
  67. Hall, G. H. (1972). Changes in body temperature produced by cholinomimetic substances in jected into the cerebral ventricles of unanaesthetized cats. Br. J. Pharmac., 44, 634–641CrossRefGoogle Scholar
  68. Hammel, H. T., Hardy, J. D. and Fusco, M. M. (1960). Thermoregulatory responses to hypo thalamic cooling in unanaesthetised dogs. Am. J. Physiol., 198, 481–486PubMedGoogle Scholar
  69. Harvey, C. A. and Milton, A. S. (1974). The effect of parachlorophenylalanine on the response of the conscious cat to intravenous and intraventricular bacterial pyrogen and to intraventricular prostaglandin E1. J. Physiol (Lond), 236, 14–15 PGoogle Scholar
  70. Harvey, C. A. and Milton, A. S. (1975). Endogenous pyrogen fever, prostaglandin release and prostaglandin synthetase inhibitors. J. Physiol. (Lond.), 250, 18–20 PGoogle Scholar
  71. Harvey, C. A. and Milton, A. S. (1976). The effects of parachlorophenylalanine and 6-hydroxydopamine on thermoregulatory responses to heat and cold stress. J. Physiol. (Lond.), 263, 208–209 PGoogle Scholar
  72. Harvey, C. A., Milton, A. S. and Straughan, D. W. (1975). Prostaglandin E levels in cerebrospinal fluid of rabbits and the effects of bacterial pyrogen and antipyretic drugs. J. Physiol. (Lond), 248, 26–27 PGoogle Scholar
  73. Hellon, R. F. (1967). Thermal stimulation of hypothalamic neurones in unanaesthetized rabbits. J. Physiol (Lond), 193, 381–395CrossRefGoogle Scholar
  74. Hellon, R. F. (1970). The stimulation of hypothalamic neurons by changes in ambient temperature. Pflegers. Arch., 321, 56–66CrossRefGoogle Scholar
  75. Hemingway, A., Rasmussen, T., Wikoff, H. and Rasmussen, A. T. (1940). Effects of heating hypothalamus of dogs by diathermy. J. NeurophysioL, 3, 329–338Google Scholar
  76. Henderson, W. R. and Wilson, W. C. (1936). Intraventricular injection of acetylcholine and eserine in man. Quart. J. exptl. PhysioL, 26, 83–95CrossRefGoogle Scholar
  77. Hill, H. F. and Horita, A. (1971). Inhibition of D-amphetamine hyperthermia by blockade of dopamine receptors. J. Pharm. Pharmacol., 23, 715–717PubMedCrossRefGoogle Scholar
  78. Hill, H. F. and Horita, A. (1972). A pimozide sensitive effect of apomorphine on body temperature of the rabbit. J. Pharm. Pharmacol., 24, 490–491PubMedCrossRefGoogle Scholar
  79. Horita, A. and Gogerty, J. H. (1958). The pyretogenic effect of 5-hydroxytryptophan and its comparison with that of LSD. J. Pharmacol. exp. Ther., 122, 195–200PubMedGoogle Scholar
  80. Jackson, D. L. (1967). A hypothalamic region responsive to localized injection of pyrogens. J. Neurophysiol., 30, 586–602.PubMedGoogle Scholar
  81. Jacobson, F. H. (1967). ‘Warmth response’ evoked by preoptic injections of serotonin. Fedn. Proc., 26, 555Google Scholar
  82. Kahn, R. H. (1904). Uber die Erwarmung des Carotidblutes. Arch. Anat. Physiol, 28, 81–134 Kennedy, M. S. and Burks, T. F. (1974). Dopamine receptors in the central thermoregulatory mechanism of the cat. Neuropharmac., 13, 119–128Google Scholar
  83. King, M. K. and Wood, W. B. Jr. (1958). Studies on the pathogenesis of fever. Part IV: The site of action of leucocytic and circulating endogenous pyrogen. J. exp. Med., 107, 291–303PubMedPubMedCentralCrossRefGoogle Scholar
  84. Komiskey, H. L. and Rudy, T. A. (1977). Serotoninergic influences on brainstem thermoregulatory mechanisms in the cat. Brain Res., 134, 297–315PubMedCrossRefGoogle Scholar
  85. Kruk, Z. L. (1972). The effect of drugs acting on dopamine receptors on the body temperature of the rat. Life Sci., 11, Part I, 845–850Google Scholar
  86. Kulkarni, A. S. (1967). Effects on temperature of serotonin and epinephrine injected into the lateral cerebral ventricle of the cat. J. Pharmacol. Exp. Ther., 157, 541–545PubMedGoogle Scholar
  87. Labum, H., Rosendorff, C., Willies, G. and Woolf, C. (1974). A role for noradrenaline and cyclic AMP in prostaglandin E1 fever. J. Physioi (Lond), 240, 49–50 PGoogle Scholar
  88. Magoun, H. W., Harrison, F., Brobeck, J. R. and Ranson, S. W. (1938). Activation of heat loss mechanisms by local heating of the brain. J. Neurophysiol, 1, 101–114Google Scholar
  89. Milton, A. S. (1973). Prostaglandin Ei and endotoxin fever, and the effects of aspirin, indo methacin and 4-acetamidophenol. Advs. Biosciences, 9, 495–500Google Scholar
  90. Milton, A. S. and Harvey, C. A. (1975). Prostaglandins and monoamines in fever. In P. Lomax, E. Schönbaum and J. Jacob (eds.). Temperature Regulation and Drug Action, Karger, Basel, 133–142Google Scholar
  91. Milton, A. S. and Wendlandt, S. (1968). The effect of 4-acetamidophenol in reducing fever produced by the intracerebral injection of 5-hydroxytryptamine and pyrogen in the conscious cat. Brit. J. Pharmac., 34, 215 PGoogle Scholar
  92. Milton, A. S. and Wendlandt, S. (1970). A possible role for prostaglandin E1 as a modulator for temperature regulation in the central nervous system of the cat. J. PhysioL (Lond), 207, 76–77 PGoogle Scholar
  93. Milton, A. S. and Wendlandt, S. (1971a). The effects of 4-acetamidophenol (paracetamol) on the temperature response of the conscious rat to the intracerebral injection of prostaglandin E1, adrenaline and pyrogen. J. Physiol. (Lond.), 217, 33–34 PCrossRefGoogle Scholar
  94. Milton, A. S. and Wendlandt, S. (197lb). Effects on body temperature of prostaglandins of the A, E and F series on injection into the third ventricle of unanaesthetized cats and rabbits. J. Physiol. (Lond.), 218, 325–336Google Scholar
  95. Murakami, N. (1973). Effects of iontophoretic application of 5-hydroxytryptamine, noradrenaline and acetylcholine upon hypothalamic temperature-sensitive neurones in rats. Jap. J. Physiol., 23, 435–466CrossRefGoogle Scholar
  96. Myers, R. D. (1966). Release of chemical factors from the diencephalic region of the un-anaesthetized monkey during changes in body temperature. J. Physiol. (Gond.), 188, 50–51 PGoogle Scholar
  97. Myers, R. D. (1971). Hypothalamic mechanisms of pyrogen action in the cat and monkey. In G. E. W. Wolstenholme and J. Birch (eds.). Pyrogens and Fever, Churchill Livingstone, Edinburgh and London, 131–146CrossRefGoogle Scholar
  98. Myers, R. D. and Chinn, C. (1973). Evoked release of hypothalamic norephinephrine during thermoregulation in the cat. Am. J. Physiol., 224, 230–236PubMedGoogle Scholar
  99. Myers, R. D. and Sharpe, L. G. (1967). Intracerebral injections and perfusions in the conscious monkey. In H. Vagtborg (ed.). The Use of Subhuman Primates in Drug Evaluation. Univ. Texas Press, AustinGoogle Scholar
  100. Myers, R. D. and Yaksh, T. L. (1968). Feeding and temperature responses in the unrestrained rat after injections of cholinergic and aminergic substances into the cerebral ventricles. Physiol Behay., 3, 917–928CrossRefGoogle Scholar
  101. Myers, R. D. and Yaksh, T. L. (1969). Control of body temperature in the unanaesthetized monkey by cholinergic and aminergic systems in the hypothalamus. J. Physiol. (Lond.), 202, 483–500CrossRefGoogle Scholar
  102. Nakayama, T., Eisenman, J. S. and Hardy, J. D. (1961). Single-unit activity of anterior hypothalamus during local heating. Science N. Y., 134, 560–561CrossRefGoogle Scholar
  103. Nakayama, T., Hammel, H. T., Hardy, J. D. and Eisenman, J. S. (1963). Thermal stimulation of electrical activity of single units of the preoptic region. Am. J. Physiol., 204, 1122–1126Google Scholar
  104. Pettinger, W. A., Bautz, G. T., Wiggan, G. A. and Sheppard, H. (1970). Cyclic AMP as a mediator of vasodilatation: indirect evidence. Pharmacologist, 12, 291Google Scholar
  105. Piper, P. and Vane, J. (1971). The release of prostaglandins from lung and other tissues. Ann. N. Y. Acad. Sei., 180, 363–385CrossRefGoogle Scholar
  106. Pittman, Q. J., Veale, W. L. and Cooper, K. E. (1976). Observations on the effect of salicylate in fever and the regulation of body temperature against cold. Can. J. Physiol. and Pharma-col., 54, 101–106CrossRefGoogle Scholar
  107. Rall, T. W. and Sattin, A. (1970). Factors influencing the accumulation of cyclic AMP in brain tissue. In F. Greengard and E. Costa (eds.). Role of Cyclic AMP in Cell Function, Raven Press, New York, 113–133Google Scholar
  108. Reimann, H. A. (1967). Caffeinism: a cause of long-continued, low-grade fever. J. Am. Med. Assoc., 202, 1105–1106CrossRefGoogle Scholar
  109. Ritchie, J. M. (1970). Central nervous system stimulants. Part II: the xanthines. In L. S. Goodman and A. Gilman (eds.). The Pharmacological Basis of Therapeutics, Macmillan, London, 4th edn., 358–370Google Scholar
  110. Robison, G. A., Butcher, R. W. and Sutherland, E. W. (1971). Cyclic AMP, Academic Press, New YorkGoogle Scholar
  111. Rowley, D., Howard, J. G. and Jenkin, C. R. (1956). The fate of 32P-labelled bacterial lipopolysaccharide in laboratory animals. Lancet, 1, 336–367Google Scholar
  112. Ruckebusch, Y., Grivel, M. L. and Laplace, J. P. (1965). Variations interspdcifiques des modifications de la température centrale liées a l’injection cérébroventriculaire de catécholamines et de 5-hydroxytryptamine. C. R. seanc. Soc. Biol., 159, 8–9Google Scholar
  113. Satinoff, E. (1964). Behavioural thermoregulation in response to local cooling of the rat brain. Am. J. Physiol., 206, 1389–1394PubMedGoogle Scholar
  114. Simmonds, M. A. (1970). Effect of environmental temperature on the turnover of 5-hydroxytryptamine in various areas of rat brain. J. Physiol. (Lond.), 211, 93–108PubMedCentralCrossRefGoogle Scholar
  115. Soifer, H. (1957). Aminophylline toxicity. J. Pediat., 50, 657–669PubMedCrossRefGoogle Scholar
  116. Stitt, J. T. (1973). Prostaglandin E1 fever induced in rabbits. J. Physiol (Lond), 232, 163–179PubMedCentralCrossRefGoogle Scholar
  117. Stuart, D. G., Maxwell, D. S., Hayward, J. N., Fairchild, M. D., Adey, W. R. and Porter, R. W. (1963). Unit activity in the hypothalamus. Bol. Inst. Estud méd. Biol., 21, 349–370Google Scholar
  118. Sutherland, E. W. and Rall, T. W. (1958). Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J. biol. Chem., 232, 1077–1091PubMedGoogle Scholar
  119. Tagliamonte, A., Tagliamonte, P., Perez-Cruet, J., Stern, S. and Gessa, G. L. (1971). Effect of psychotropic drugs on tryptophan concentration in the rat brain. J. Pharmacol. Exp. Ther., 177, 475–480PubMedGoogle Scholar
  120. Toivola, P. and Gale, C. C. (1970). Effect on temperature of biogenic amine infusion into hypothalamus of baboon. Neuroendocrinology, 6, 210–219PubMedCrossRefGoogle Scholar
  121. Uchimura, H. and Murakami, N. (1973). Effects of adrenoceptor-blocking agent phenoxybenzamine on rectal temperature and skin temperature of rabbits. J. Physiol. Soc. Japan, 35, 435–436Google Scholar
  122. Vane, J. R. (1957). A sensitive method for the assay of 5-hydroxytryptamine. Brit. J. Pharmac. Chemother., 12, 344–349CrossRefGoogle Scholar
  123. Vane, J. R. (1971). Inhibition of prostaglandin synthesis as a mechanism of action of aspirin-like drugs. Nature, New Biology, 231, 232–235CrossRefGoogle Scholar
  124. Varagié, V. M. and Beleslin, D. B. (1973). The effect of cyclic N-2-o-dibutyryl-adenosine-3’, 5’-monophosphate, adenosine triphosphate and butyrate on the body temperature of conscious cats. Brain Res., 57, 252–254CrossRefGoogle Scholar
  125. Veale, W. F. and Cooper, K. E. (1975). Comparison of sites of action of prostaglandin and leucocyte pyrogen in brain. In P. Lomax, E. Schönbaum and J. Jacob (eds.). Temperature Regulation and Drug Action, Karger, Basel, 218–226Google Scholar
  126. Villablanca, J. and Myers, R. D. (1965). Fever produced by microinjection of typhoid vaccine into hypothalamus of cats. Am. J. Physiol., 208, 703–707PubMedGoogle Scholar
  127. Westphal, 0. (1957). Pyrogen. In G. F. Springer (ed.). Polysaccharides in Biology, Macy, New York, 115Google Scholar
  128. Wit, W. and Wang, S. C. (1968). Temperature-sensitive neurons in preoptic/anterior hypothalamic region: effects on increasing ambient temperature. Am. J. Physiol, 215, 1151–1169PubMedGoogle Scholar

Copyright information

© B. Cox, I. D. Morris and A. H. Weston 1978

Authors and Affiliations

  • A. S. Milton
    • 1
  1. 1.Department of PharmacologyUniversity Medical BuildingsAberdeenScotland

Personalised recommendations